ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodic properties of a class of non-Markovian processes

127   0   0.0 ( 0 )
 نشر من قبل Martin Hairer
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف M. Hairer




اسأل ChatGPT حول البحث

We study a fairly general class of time-homogeneous stochastic evolutions driven by noises that are not white in time. As a consequence, the resulting processes do not have the Markov property. In this setting, we obtain constructive criteria for the uniqueness of stationary solutions that are very close in spirit to the existing criteria for Markov processes. In the case of discrete time, where the driving noise consists of a stationary sequence of Gaussian random variables, we give optimal conditions on the spectral measure for our criteria to be applicable. In particular, we show that under a certain assumption on the spectral density, our assumptions can be checked in virtually the same way as one would check that the Markov process obtained by replacing the driving sequence by a sequence of independent identically distributed Gaussian random variables is strong Feller and topologically irreducible. The results of the present article are based on those obtained previously in the continuous time context of diffusions driven by fractional Brownian motion.



قيم البحث

اقرأ أيضاً

185 - Alexey M. Kulik 2009
New relations between ergodic rate, L_p convergence rates, and asymptotic behavior of tail probabilities for hitting times of a time homogeneous Markov process are established. For L_p convergence rates and related spectral and functional properties (spectral gap and Poincare inequality) sufficient conditions are given in the terms of an exponential phi-coupling. This provides sufficient conditions for L_p convergence rates in the terms of appropriate combination of `local mixing and `recurrence conditions on the initial process, typical in the ergodic theory of Markov processes. The range of application of the approach includes time-irreversible processes. In particular, sufficient conditions for spectral gap property for Levy driven Ornstein-Uhlenbeck process are established.
We investigate the standard deviation $delta v(tsamp)$ of the variance $v[xbf]$ of time series $xbf$ measured over a finite sampling time $tsamp$ focusing on non-ergodic systems where independent configurations $c$ get trapped in meta-basins of a gen eralized phase space. It is thus relevant in which order averages over the configurations $c$ and over time series $k$ of a configuration $c$ are performed. Three variances of $v[xbf_{ck}]$ must be distinguished: the total variance $dvtot = dvint + dvext$ and its contributions $dvint$, the typical internal variance within the meta-basins, and $dvext$, characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable $x(t)$ is due to a density field averaged over a large system volume $V$. The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of $svint$ and $svext$ are manifested by their different system-size dependence
We study a family of McKean-Vlasov (mean-field) type ergodic optimal control problems with linear control, and quadratic dependence on control of the cost function. For this class of problems we establish existence and uniqueness of an optimal contro l. We propose an $N$-particles Markovian optimal control problem approximating the McKean-Vlasov one and we prove the convergence in relative entropy, total variation and Wasserstein distance of the law of the former to the law of the latter when $N$ goes to infinity. Some McKean-Vlasov optimal control problems with singular cost function and the relation of these problems with the mathematical theory of Bose-Einstein condensation is also established.
We introduce a new model for rill erosion. We start with a network similar to that in the Discrete Web and instantiate a dynamics which makes the process highly non-Markovian. The behavior of nodes in the streams is similar to the behavior of Polya u rns with time-dependent input. In this paper we use a combination of rigorous arguments and simulation results to show that the model exhibits many properties of rill erosion; in particular, nodes which are deeper in the network tend to switch less quickly.
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corre ctions ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا