ﻻ يوجد ملخص باللغة العربية
The IceCube neutrino detector is built into the Antarctic ice sheet at the South Pole to measure high energy neutrinos. For this, 4800 photomultiplier tubes (PMTs) are being deployed at depths between 1450 and 2450 meters into the ice to measure neutrino induced charged particles like muons. IceTop is a surface air shower detector consisting of 160 Cherenkov ice tanks located on top of IceCube. To extend IceTop, a radio air shower detector could be built to significantly increase the sensitivity at higher shower energies and for inclined showers. As air showers induced by cosmic rays are a major part of the muonic background in IceCube, IceTop is not only an air shower detector, but also a veto to reduce the background in IceCube. Air showers are detectable by radio signals with a radio surface detector. The major emission process is the coherent synchrotron radiation emitted by e+ e- shower particles in the Earths magnetic field (geosynchrotron effect). Simulations of the expected radio signals of air showers are shown. The sensitivity and the energy threshold of different antenna field configurations are estimated.
IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from abou
We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the South Pole. IceTop, an integral part of
An upgrade of the present IceCube surface array (IceTop) with scintillation detectors and possibly radio antennas is foreseen. The enhanced array will calibrate the impact of snow accumulation on the reconstruction of cosmic-ray showers detected by I
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been
The radio detection method for cosmic rays relies on coherent emission from electrons and positrons which is beamed in a narrow cone along the shower axis. Currently the only mod- els to reproduce this emission with sufficient accuracy are Monte Carl