ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of strong-coupling effects in a diluted magnetic semiconductor (Ga,Fe)N

142   0   0.0 ( 0 )
 نشر من قبل Wojciech Pacuski
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A direct observation of the giant Zeeman splitting of the free excitons in (Ga,Fe)N is reported. The magnetooptical and magnetization data imply the ferromagnetic sign and a reduced magnitude of the effective p-d exchange energy governing the interaction between Fe^{3+} ions and holes in GaN, N_0 beta^(app) = +0.5 +/- 0.2 eV. This finding corroborates the recent suggestion that the strong p-d hybridization specific to nitrides and oxides leads to significant renormalization of the valence band exchange splitting.



قيم البحث

اقرأ أيضاً

202 - M. Kobayashi , H. Niwa , Y. Takeda 2013
The electronic structure of doped Mn in (Ga,Mn)As is studied by resonant inelastic X-ray scattering (RIXS). From configuration-interaction cluster-model calculations, the line shapes of the Mn $L_3$ RIXS spectra can be explained by $d$-$d$ excitation s from the Mn$^{3+}$ ground state, dominated by charge-transferred states, rather than a Mn$^{2+}$ ground state. Unlike archetypical $d$-$d$ excitation, the peak widths are broader than the experimental energy resolution. We attribute the broadening to a finite lifetime of the $d$-$d$ excitations, which decay rapidly to electron-hole pairs in the host valence and conduction bands through hybridization of the Mn $3d$ orbital with the ligand band.
We study the electronic structure of the recently discovered diluted magnetic semiconductor Ga$_{1-x}$Cr$_{x}$N ($x$ = 0.01-0.10). A systematic study of the changes in the $occupied$ and $unoccupied$ ligand (N) partial density of states (DOS) of the host lattice is carried out using N 1$s$ soft x-ray emission and absorption spectroscopy, respectively. X-ray absorption measurements confirm the wurtzite N 2$p$ DOS and substitutional doping of Cr into Ga-sites. Coupled changes in the $occupied$ and $unoccupied$ N 2$p$ character DOS of Ga$_{1-x}$Cr$_{x}$N identify states responsible for ferromagnetism consistent with band structure calculations.
We have studied the electronic structure of the diluted magnetic semiconductor Ga$_{1-x}$Mn$_{x}$N ($x$ = 0.0, 0.02 and 0.042) grown on Sn-doped $n$-type GaN using photoemission and soft x-ray absorption spectroscopy. Mn $L$-edge x-ray absorption hav e indicated that the Mn ions are in the tetrahedral crystal field and that their valence is divalent. Upon Mn doping into GaN, new state were found to form within the band gap of GaN, and the Fermi level was shifted downward. Satellite structures in the Mn 2$p$ core level and the Mn 3$d$ partial density of states were analyzed using configuration-interaction calculation on a MnN$_{4}$ cluster model. The deduced electronic structure parameters reveal that the $p$-$d$ exchange coupling in Ga$_{1-x}$Mn$_{x}$N is stronger than that in Ga$_{1-x}$Mn$_{x}$As.
220 - Do Le Binh , B.J. Ruck , F. Natali 2013
Europium nitride is semiconducting and contains non-magnetic 3+, but sub-stoichiometric EuN has Eu in a mix of 2+ and 3+ charge states. We show that at 2+ ~concentrations near 15-20% EuN is ferromagnetic with a Curie temperature as high as 120 K. The 3+ ~polarization follows that of the 2+, confirming that the ferromagnetism is intrinsic to the EuN which is thus a novel diluted magnetic semiconductor. Transport measurements shed light on the likely exchange mechanisms.
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorp tion spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe$^{3+}$ ionic state with mixture of a small amount of Fe$^{2+}$ and that Fe$^{3+}$ ions are dominant in the surface region of the nano-particles. It is shown that the room temperature ferromagnetism in the Zn$_{0.9}$Fe$_{0.1}$O nano-particles is primarily originated from the antiferromagnetic coupling between unequal amounts of Fe$^{3+}$ ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of $sim$ 2-3 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا