ﻻ يوجد ملخص باللغة العربية
We study Greens matrices for divergence form, second order strongly elliptic systems with bounded measurable coefficients in two dimensional domains. We establish existence, uniqueness, and pointwise estimates of the Greens matrices.
We establish existence and various estimates of fundamental matrices and Greens matrices for divergence form, second order strongly parabolic systems in arbitrary cylindrical domains under the assumption that solutions of the systems satisfy an inter
We consider a second-order parabolic equation in $bR^{d+1}$ with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Holder continuous in the space variables. We show that g
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This
We construct Greens functions for second order parabolic operators of the form $Pu=partial_t u-{rm div}({bf A} abla u+ boldsymbol{b}u)+ boldsymbol{c} cdot abla u+du$ in $(-infty, infty) times Omega$, where $Omega$ is an open connected set in $mathb
We consider both divergence and non-divergence parabolic equations on a half space in weighted Sobolev spaces. All the leading coefficients are assumed to be only measurable in the time and one spatial variable except one coefficient, which is assume