ﻻ يوجد ملخص باللغة العربية
We argue that the highly studied black hole signatures based on thermal multiparticle final states are very unlikely and only occur in a very limited parameter regime if at all. However, we show that if the higher-dimensional quantum gravity scale is low, it should be possible to study quantum gravity in the context of higher dimensions through detailed compositeness-type searches.
We examine the LHC phenomenology of quantum black holes in models of TeV gravity. By quantum black holes we mean black holes of the smallest masses and entropies, far from the semiclassical regime. These black holes are formed and decay over short di
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck s
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons
The relevant physics for the possible formation of black holes in the LHC is discussed.
LHC is expected to be a top quark factory. If the fundamental Planck scale is near a TeV, then we also expect the top quarks to be produced from black holes via Hawking radiation. In this paper we calculate the cross sections for top quark production