ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-like Description of Probabilistic Data from Shafir-Tversky Experiments: evidence of trigonometric and hyperbolic (!) interference

6   0   0.0 ( 0 )
 نشر من قبل Andrei Khrennikov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrei Khrennikov




اسأل ChatGPT حول البحث

In this paper we present quantum-like (QL) representation of the Shafir-Tversky statistical effect. We apply so called contextual approach. The Shafir-Tversky effect is considered as a consequence of combination of a number of incompatible contexts which are involved e.g. in Prisoners Dilemma or in more general games inducing the disjunction effect. As a consequence, the law of total probability is violated for experimental data obtained by Shafir and Tversky (1992) as well as Tversky and Shafir (1992). Moreover, we can find a numerical measure of contextual incompatibility (so called coefficient of interference) as well as represent contexts which are involved in Prisoners Dilemma (PD) by probability amplitudes -- normalized vectors (``mental wave functions). We remark that statistical data from Shafir and Tversky (1992) and Tversky and Shafir (1992) experiments differ crucially from the point of view of mental interference. The second one exhibits the conventional trigonometric ($cos$-type) interference, but the first one exhibits so called hyperbolic ($cosh$-type) interference. We discuss QL processing of information by cognitive systems, in particular, QL decision making as well as classical and QL rationality.

قيم البحث

اقرأ أيضاً

40 - Andrei Khrennikov 2008
In this paper we present a simple algorithm for representation of statistical data of any origin by complex probability amplitudes. Numerical simulation with Mathematica-6 is performed. The Blochs sphere is used for visualization of results of numeri cal simulation. On the one hand, creation of such a quantum-like (QL) representation and its numerical approval is an important step in clarification of extremely complicated interrelation between classical and quantum randomness. On the other hand, it opens new possibilities for application the mathematical formalism of QM in other domains of science.
We present a conceptually new approach to describe state-of-the-art photonic quantum experiments using Graph Theory. There, the quantum states are given by the coherent superpositions of perfect matchings. The crucial observation is that introducing complex weights in graphs naturally leads to quantum interference. The new viewpoint immediately leads to many interesting results, some of which we present here. Firstly, we identify a new and experimentally completely unexplored multiphoton interference phenomenon. Secondly, we find that computing the results of such experiments is #P-hard, which means it is a classically intractable problem dealing with the computation of a matrix function Permanent and its generalization Hafnian. Thirdly, we explain how a recent no-go result applies generally to linear optical quantum experiments, thus revealing important insights to quantum state generation with current photonic technology. Fourthly, we show how to describe quantum protocols such as entanglement swapping in a graphical way. The uncovered bridge between quantum experiments and Graph Theory offers a novel perspective on a widely used technology, and immediately raises many follow-up questions.
We derive a new algorithm for computing the action $f(A)V$ of the cosine, sine, hyperbolic cosine, and hyperbolic sine of a matrix $A$ on a matrix $V$, without first computing $f(A)$. The algorithm can compute $cos(A)V$ and $sin(A)V$ simultaneously, and likewise for $cosh(A)V$ and $sinh(A)V$, and it uses only real arithmetic when $A$ is real. The algorithm exploits an existing algorithm texttt{expmv} of Al-Mohy and Higham for $mathrm{e}^AV$ and its underlying backward error analysis. Our experiments show that the new algorithm performs in a forward stable manner and is generally significantly faster than alternatives based on multiple invocations of texttt{expmv} through formulas such as $cos(A)V = (mathrm{e}^{mathrm{i}A}V + mathrm{e}^{mathrm{-i}A}V)/2$.
95 - P. R. Silva 2013
A quantum vacuum, represented by a viscous fluid, is added to the Einstein vacuum, surrounding a spherical distribution of mass. This gives as a solution, in spherical coordinates, a Schwarzschild-like metric. The plot of g00 and g11 components of th e metric, as a function of the radial coordinate, display the same qualitative behavior as that of the Schwarzschild metric. However, the temperature of the event horizon is equal to the Hawking temperature multiplied by a factor of two, while the entropy is equal to half of the Bekenstein one.
Recent experimental reports of super-luminal velocity neutrinos moving between Geneva and Gran Sasso in no way contradict the special relativity considerations of conventional quantum field theory. A neutrino exchanged between Geneva and Gran Sasso i s both virtual and space-like. The Lorentz invariant space-like distance $L$ and the Lorentz invariant space-like four momentum transfered $varpi $ between Geneva and Gran Sasso can be extracted from experimental data as will be shown in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا