ترغب بنشر مسار تعليمي؟ اضغط هنا

The Toomre Sequence Revisited with HST/NICMOS: Nuclear Brightness Profiles and Colors of Interacting and Merging Galaxies

47   0   0.0 ( 0 )
 نشر من قبل Joern Rossa
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Joern Rossa




اسأل ChatGPT حول البحث

We discuss the near-infrared properties of the nuclei in the 11 merging galaxies of the Toomre sequence, based on high spatial resolution J, H, and K imaging data using NICMOS onboard the Hubble Space Telescope (HST). The observations are less affected by dust extinction than our previous HST/WFPC2 observations and offer higher spatial resolution than existing ground-based near-IR data. We see a marginal trend for the nuclei to become bluer with advancing merger stage, which we attribute to a dispersal of dust at late times in the merging process. Our data also indicate a statistically significant trend for the nuclei in the sequence to become more luminous, within an aperture of fixed physical size and after correcting for dust extinction, with advancing merger stage. We derive K-band surface brightness profiles for those nuclei for which the morphology allows a meaningful isophotal analysis, and fit the profiles with a ``Nuker law for comparison with other samples of galaxies observed with HST. The majority of the nuclei have steep profiles that can be characterized as power-law type. In general, the Toomre sequence galaxies tend to have steeper profiles and higher central luminosity surface densities than E/S0s. We derive V-K color profiles for the nuclei to further address this possibility, but find that the large amounts of dust extinction complicate their interpretation. Overall, our results are consistent with the generic predictions of N-body simulations of spiral galaxy mergers. If left to evolve and fade for several Gyrs, it is possible that the properties of the Toomre sequence nuclei would resemble theproperties of the nuclei of normal E/S0 galaxies. Our results therefore support the view that mergers of spiral galaxies can lead to the formation of early-type galaxies (Abridged).

قيم البحث

اقرأ أيضاً

We present first results from an HST WFPC2 imaging and STIS spectroscopy program to investigate the structural and star forming properties in the nuclear regions of the Toomre Sequence of merging galaxies. Here we discuss V-band, I-band and H-alpha i mages of the nuclei. We comment briefly on the connection between the nuclear morphology of the ionized gas and the merger stage.
144 - H.R. de Ruiter 2005
We present a study of the optical brightness profiles of early type galaxies, using a number of samples of radio galaxies and optically selected elliptical galaxies. For the radio galaxy samples--B2 of Fanaroff-Riley type I and 3C of Fanaroff-Riley t ype II-- we determined a number of parameters that describe a Nuker-law profile, which were compared with those already known for the optically selected objects. We find that radio active galaxies are always of the core type (i.e. an inner Nuker law slope gamma < 0.3). However, there are core-type galaxies which harbor no significant radio source and which are indistinguishable from the radio active galaxies. We do not find any radio detected galaxy with a power law profile (gamma > 0.5). This difference is not due to any effect with absolute magnitude, since in a region of overlap in magnitude the dichotomy between radio active and radio quiescent galaxies remains. We speculate that core-type objects represent the galaxies that have been, are, or may become, radio active at some stage in their lives; active and non-active core-type galaxies are therefore identical in all respects except their eventual radio-activity: on HST scales we do not find any relationship between boxiness and radio-activity. There is a fundamental plane, defined by the parameters of the core (break radius r_b and break brightness mu_b), which is seen in the strong correlation between r_b and mu_b. The break radius is also linearly proportional to the optical Luminosity in the $I$ band. Moreover, for the few galaxies with an independently measured black hole mass, the break radius turns out to be tightly correlated with M_{BH}. The black hole mass correlates even better with the combination of fundamental plane parameters r_b and mu_b, which represents the central velocity dispersion.
We combine the results from several HST investigations of the central structure of early-type galaxies to generate a large sample of parameterized surface photometry. The studies included were those that used the Nuker law to characterize the inner l ight distributions of the galaxies. The sample comprises WFPC1 and WFPC2 V band observations published earlier by our group, R band WFPC2 photometry of Rest et al., NICMOS H band photometry by Ravindranath et al. and Quillen et al., and the BCG WFPC2 I band photometry of Laine et al. The distribution of the logarithmic slopes of the central profiles strongly affirms that the central structure of elliptical galaxies with Mv < -19 is bimodal, based on both parametric and non-parametric analysis. At the HST resolution limit, most galaxies are either power-law systems, which have steep cusps in surface brightness, or core systems, which have shallow cusps interior to a steeper envelope brightness distribution. A rapid transition between the two forms occurs over the luminosity range -22 < Mv < -20, with cores dominating at the highest luminosities, and power-laws at the lowest. There are a few intermediate systems that have both cusp slopes and total luminosities that fall within the core/power-law transition, but they are rare and do not fill in the overall bimodal distribution of cusp slopes. These results are inconsistent with the Ferrarese et al. Virgo Cluster Survey (VCS) analysis. However, using galaxies common to the VCS samples, we demonstrate that the VCS models of the cusps are either a poor match to the observations or consist of forms fitted to the galaxy envelopes and extrapolated inward to the HST resolution limit.
92 - K. D. Borne 1998
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images with NICMOS. Such images are probing for the first time the fine-scale structures in the strong collision-disturbed morphologies of these rare and exotic galaxies.
85 - S. Haan , J.A. Surace , L. Armus 2010
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and spectroscopic data from space (Spitzer, HST, GALEX, and Chandra) and ground-based telescopes. In this paper we use the high-resolution near-infrared data to recover nuclear structure that is obscured by dust at optical wavelengths and measure the evolution in this structure along the merger sequence. A large fraction of all galaxies in our sample possess double nuclei (~63%) or show evidence for triple nuclei (~6%). Half of these double nuclei are not visible in the HST B-band images due to dust obscuration. The majority of interacting LIRGs have remaining merger timescales of 0.3 to 1.3 Gyrs, based on the projected nuclear separations and the mass ratio of nuclei. We find that the bulge luminosity surface density increases significantly along the merger sequence (primarily due to a decrease of the bulge radius), while the bulge luminosity shows a small increase towards late merger stages. No significant increase of the bulge Sersic index is found. LIRGs that show no interaction features have on average a significantly larger bulge luminosity, suggesting that non merging LIRGs have larger bulge masses than merging LIRGs. This may be related to the flux limited nature of the sample and the fact that mergers can significantly boost the IR luminosity of otherwise low luminosity galaxies. We find that the projected nuclear separation is significantly smaller for ULIRGs (median value of 1.2 kpc) than for LIRGs (mean value of 6.7 kpc), suggesting that the LIRG phase appears earlier in mergers than the ULIRG phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا