ترغب بنشر مسار تعليمي؟ اضغط هنا

GRANIT project: a trap for gravitational quantum states of UCN

126   0   0.0 ( 0 )
 نشر من قبل Guillaume Pignol
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenbergs uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.



قيم البحث

اقرأ أيضاً

Observation time is the key parameter for improving the precision of measurements of gravitational quantum states of particles levitating above a reflecting surface. We propose a new method of long confinement in such states of atoms, anti-atoms, neu trons and other particles possessing a magnetic moment. The Earth gravitational field and a reflecting mirror confine particles in the vertical direction. The magnetic field originating from electric current passing through a vertical wire confines particles in the radial direction. Under appropriate conditions, motions along these two directions are decoupled to a high degree. We estimate characteristic parameters of the problem, and list possible systematic effects that limit storage times due to the coupling of the two motions. In the limit of low particle velocities and magnetic fields, precise control of the particle motion and long storage times in the trap can provide ideal conditions for both gravitational, optical and hyperfine spectroscopy: for the sensitive verification of the equivalence principle for antihydrogen atoms; for increasing the accuracy of optical and hyperfine spectroscopy of atoms and antiatoms; for improving constraints on extra fundamental interactions from experiments with neutrons, atoms and antiatoms.
The UCN$tau$ experiment is designed to measure the lifetime $tau_{n}$ of the free neutron by trapping ultracold neutrons (UCN) in a magneto-gravitational trap. An asymmetric bowl-shaped NdFeB magnet Halbach array confines low-field-seeking UCN within the apparatus, and a set of electromagnetic coils in a toroidal geometry provide a background holding field to eliminate depolarization-induced UCN loss caused by magnetic field nodes. We present a measurement of the storage time $tau_{store}$ of the trap by storing UCN for various times, and counting the survivors. The data are consistent with a single exponential decay, and we find $tau_{store}=860pm19$ s: within $1 sigma$ of current global averages for $tau_{n}$. The storage time with the holding field deactiveated is found to be $tau_{store}=470 pm 160$ s; this decreased storage time is due to the loss of UCN which undergo Majorana spin-flips while being stored. We discuss plans to increase the statistical sensitivity of the measurement and investigate potential systematic effects.
The GRANIT project is the follow-up of the pioneering experiments that first observed the quantum states of neutrons trapped in the earths gravitational field at the Institute Laue Langevin (ILL). Due to the weakness of the gravitational force, these quantum states exhibit most unusual properties: peV energies and spatial extensions of order 10 $mu$m. Whereas the first series of observations aimed at measuring the properties of the wave functions, the GRANIT experiment will induce resonant transitions between states thus accessing to spectroscopic measurements. After a brief reminder of achieved results, the principle and the status of the experiment, presently under commissioning at the ILL, will be given. In the second part, we will discuss the potential of GRANIT to search for new physics, in particular to a modified Newton law in the micrometer range.
The arithmetic problem of factoring an integer $N$ can be translated into the physics of a quantum device, a result that supports Polyas and Hilberts conjecture to prove Riemanns hypothesis. The energies of this system, being univocally related to th e factors of $N$, are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of $N$. This is equivalent to a quantum sieve that is demonstrated to require only $ o(log sqrt N)^3$ energy measurements to solve the problem, recovering Shors complexity result. Hence, the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
We present the status of the development of a dedicated high density ultra-cold neutron (UCN) source dedicated to the gravitational spectrometer GRANIT. The source employs superthermal conversion of cold neutrons to UCN in superfluid helium. Tests ha ve shown that UCN produced inside the liquid can be extracted into vacuum. Furthermore a dedicated neutron selection channel was tested to maintain high initial density and extract only neutrons with a vertical velocity component 20 cm/s for the spectrometer. This new source would have a phase-space density of 0.18 cm-3(m/s)-3 for the spectrometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا