ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical Analysis of Single-Photon Correlations Emitted by Disordered Semiconductor Heterostructures

267   0   0.0 ( 0 )
 نشر من قبل Peter Bozsoki
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent publication [Phys. Rev. Lett. 97, 227402 (2006), cond-mat/0611411], it has been demonstrated numerically that a long-range disorder potential in semiconductor quantum wells can be reconstructed reliably via single-photon interferometry of spontaneously emitted light. In the present paper, a simplified analytical model of independent two-level systems is presented in order to study the reconstruction procedure in more detail. With the help of this model, the measured photon correlations can be calculated analytically and the influence of parameters such as the disorder length scale, the wavelength of the used light, or the spotsize can be investigated systematically. Furthermore, the relation between the proposed angle-resolved single-photon correlations and the disorder potential can be understood and the measured signal is expected to be closely related to the characteristic strength and length scale of the disorder.



قيم البحث

اقرأ أيضاً

We theoretically study the single particle Green function of a three dimensional disordered Weyl semimetal using a combination of techniques. These include analytic $T$-matrix and renormalization group methods with complementary regimes of validity, and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: they instead have a nonzero linewidth that for weak short-range disorder arises from non-perturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find $eta= 0.13 pm 0.04$, which agrees well with a renormalization group analysis ($eta= 0.125$). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.
We study anomalous transport arising in disordered one-dimensional spin chains, specifically focusing on the subdiffusive transport typically found in a phase preceding the many-body localization transition. Different types of transport can be distin guished by the scaling of the average resistance with the systems length. We address the following question: what is the distribution of resistance over different disorder realizations, and how does it differ between transport types? In particular, an often evoked so-called Griffiths picture, that aims to explain slow transport as being due to rare regions of high disorder, would predict that the diverging resistivity is due to fat power-law tails in the resistance distribution. Studying many-particle systems with and without interactions we do not find any clear signs of fat tails. The data is compatible with distributions that decay faster than any power law required by the fat tails scenario. Among the distributions compatible with the data, a simple additivity argument suggests a Gaussian distribution for a fractional power of the resistance.
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three dimensional spinless $p_x+ip_y$ superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions in class D of the Altland-Zirnbauer symmetry classification; such a phase can support a large anomalous thermal Hall conductivity and protected surface Majorana-Fermi arcs at zero energy. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI) [or BEC phase] supporting only exponentially localized Lifshitz states (at low energy), and (ii) a thermal Anderson insulator (AI) at large disorder strengths. We determine the nature of the two distinct localization transitions between these two types of insulators and ThDM.We also discuss the experimental relevance of our results for three dimensional, time reversal symmetry breaking, triplet superconducting states.
Many-body localization is a fascinating theoretical concept describing the intricate interplay of quantum interference, i.e. localization, with many-body interaction induced dephasing. Numerous computational tests and also several experiments have be en put forward to support the basic concept. Typically, averages of time-dependent global observables have been considered, such as the charge imbalance. We here investigate within the disordered spin-less Hubbard ($t-V$) model how dephasing manifests in time dependent variances of observables. We find that after quenching a Neel state the local charge density exhibits strong temporal fluctuations with a damping that is sensitive to disorder $W$: variances decay in a power law manner, $t^{-zeta}$, with an exponent $zeta(W)$ strongly varying with $W$. A heuristic argument suggests the form, $zetaapproxalpha(W)xi_text{sp}$, where $xi_text{sp}(W)$ denotes the noninteracting localization length and $alpha(W)$ characterizes the multifractal structure of the dynamically active volume fraction of the many-body Hilbert space. In order to elucidate correlations underlying the damping mechanism, exact computations are compared with results from the time-dependent Hartree-Fock approximation. Implications for experimentally relevant observables, such as the imbalance, will be discussed.
We study the disordered Heisenberg spin chain, which exhibits many body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as $C sim t^{-beta}$, while the conductivity exhibits a low frequency power law $sigma sim omega^{alpha}$. The exponents depict sub-diffusive behavior $ beta < 1/2, alpha> 0 $ at all finite disorders, and convergence to the scaling result, $alpha+2beta = 1$, at large disorders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا