ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological HII Bubble Growth During Reionization

95   0   0.0 ( 0 )
 نشر من قبل Min-Su Shin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present general properties of ionized hydrogen (HII) bubbles and their growth based on a state-of-the-art large-scale (100 Mpc/h) cosmological radiative transfer simulation. The simulation resolves all halos with atomic cooling at the relevant redshifts and simultaneously performs radiative transfer and dynamical evolution of structure formation. Our major conclusions include: (1) for significant HII bubbles, the number distribution is peaked at a volume of $sim 0.6 {rm Mpc^{3}/h^{3}}$ at all redshifts. But, at $zle 10$, one large, connected network of bubbles dominates the entire HII volume. (2) HII bubbles are highly non-spherical. (3) The HII regions are highly biased with respect to the underlying matter distribution with the bias decreasing with time. (4) The non-gaussianity of the HII region is small when the universe becomes 50% ionized. The non-gaussianity reaches its maximal near the end of the reionization epoch $zsim 6$. But at all redshifts of interest there is a significant non-gaussianity in the HII field. (5) Population III galaxies may play a significant role in the reionization process. Small bubbles are initially largely produced by Pop III stars. At $zge 10$ even the largest HII bubbles have a balanced ionizing photon contribution from Pop II and Pop III stars, while at $zle 8$ Pop II stars start to dominate the overall ionizing photon production for large bubbles, although Pop III stars continue to make a non-negligible contribution. (6) The relationship between halo number density and bubble size is complicated but a strong correlation is found between halo number density and bubble size for large bubbles.



قيم البحث

اقرأ أيضاً

We use the results of large-scale simulations of reionization to explore methods for characterizing the topology and sizes of HII regions during reionization. We use four independent methods for characterizing the sizes of ionized regions. Three of t hem give us a full size distribution: the friends-of-friends (FOF) method, the spherical average method (SPA) and the power spectrum (PS) of the ionized fraction. These latter three methods are complementary: While the FOF method captures the size distribution of the small scale H II regions, which contribute only a small amount to the total ionization fraction, the spherical average method provides a smoothed measure for the average size of the H II regions constituting the main contribution to the ionized fraction, and the power spectrum does the same while retaining more details on the size distribution. Our fourth method for characterizing the sizes of the H II regions is the average size which results if we divide the total volume of the H II regions by their total surface area, (i.e. 3V/A), computed in terms of the ratio of the corresponding Minkowski functionals of the ionized fraction field. To characterize the topology of the ionized regions, we calculate the evolution of the Euler Characteristic. We find that the evolution of the topology during the first half of reionization is consistent with inside-out reionization of a Gaussian density field. We use these techniques to investigate the dependence of size and topology on some basic source properties, such as the halo mass-to-light ratio, susceptibility of haloes to negative feedback from reionization, and the minimum halo mass for sources to form. We find that suppression of ionizing sources within ionized regions slows the growth of H II regions, and also changes their size distribution. Additionally, the topology of simulations including suppression is more complex. (abridged)
Ultrasound is known to enhance surface bubble growth and removal in catalytic and microfluidic applications, yet the contributions of rectified diffusion and microstreaming phenomena towards mass transfer remain unclear. We quantify the effect of ult rasound on the diffusive growth of a single spherical CO$_2$ bubble growing on a substrate in supersaturated water. The time dependent bubble size, shape, oscillation amplitude and microstreaming flow field are resolved. We show and explain how ultrasound can enhance the diffusive growth of surface bubbles by up to two orders of magnitude during volumetric resonance. The proximity of the wall forces the bubble to oscillate non-spherically, thereby generating vigorous streaming during resonance that results in convection-dominated growth.
We investigate the effect of the Biermann battery during the Epoch of Reionization (EoR) using cosmological Adaptive Mesh Refinement simulations within the framework of the SPHINX project. We develop a novel numerical technique to solve for the Bierm ann battery term in the Constrained Transport method, preserving both the zero divergence of the magnetic field and the absence of Biermann battery for isothermal flows. The structure-preserving nature of our numerical method turns out to be very important to minimise numerical errors during validation tests of the propagation of a Stromgren sphere and of a Sedov blast wave. We then use this new method to model the evolution of a 2.5 and 5 co-moving Mpc cosmological box with a state-of-the-art galaxy formation model within the RAMSES code. Contrary to previous findings, we show that three different Biermann battery channels emerge: the first one is associated with linear perturbations before the EoR, the second one is the classical Biermann battery associated with reionization fronts during the EoR, and the third one is associated with strong, supernova-driven outflows. While the two former channels generate spontaneously volume-filling magnetic fields with a strength on the order or below $10^{-20}$ G, the latter, owing to the higher plasma temperature and a marginally-resolved turbulent dynamo, reaches a field strength as high as $10^{-18}$ G in the intergalactic medium around massive haloes.
The upcoming Square Kilometre Array (SKA-Low) will map the distribution of neutral hydrogen during reionization, and produce a tremendous amount of 3D tomographic data. These images cubes will be subject to instrumental limitations, such as noise and limited resolution. Here we present SegU-Net, a stable and reliable method for identification of neutral and ionized regions in these images. SegU-Net is a U-Net architecture based convolutional neural network (CNN) for image segmentation. It is capable of segmenting our image data into meaningful features (ionized and neutral regions) with greater accuracy compared to previous methods. We can estimate the true ionization history from our mock observation of SKA with an observation time of 1000 h with more than 87 per cent accuracy. We also show that SegU-Net can be used to recover various topological summary statistics, such as size distributions and Betti numbers, with a relative difference of only a few per cent. These summary statistics characterise the non-Gaussian nature of the reionization process.
We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changi ng the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا