ﻻ يوجد ملخص باللغة العربية
We discuss a pulsar acceleration mechanism based on asymmetric neutrino emission from the direct quark Urca process in the interior of proto neutron stars. The anisotropy is caused by a strong magnetic field which polarises the spin of the electrons opposite to the field direction. Due to parity violation the neutrinos and anti-neutrinos leave the star in one direction accelerating the pulsar. We calculate for varying quark chemical potentials the kick velocity in dependence of the quark phase temperature and its radius. Ignoring neutrino quark scattering we find that within a quark phase radius of 10 km and temperatures larger than 5 MeV kick velocities of 1000km s$^{-1}$ can be reached very easily. On the other hand taking into account the small neutrino mean free paths it seems impossible to reach velocities higher than 100km s$^{-1}$ even when including effects from colour superconductivity where the neutrino quark interactions are suppressed.
We discuss an acceleration mechanism for pulsars out of their supernova remnants based on asymmetric neutrino emission from quark matter in the presence of a strong magnetic field. The polarized electron spin fixes the neutrino emission from the dire
We show that Majoron emission from a hot nascent neutron star can be anisotropic in the presence of a strong magnetic field. If Majorons carry a non-negligible fraction of the supernova energy, the resulting recoil velocity of a neutron star can explain the observed velocities of pulsars.
In this work we study the influence of a strong magnetic field on the composition of nuclear matter at T=0 including the anomalous magnetic moment (AMM) of baryons.
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati
Observations of radio pulsars have revealed that they have large velocities which may be greater than 1000 km/s. In this work, the efficacy of an active-sterile neutrino transformation mechanism to provide these large pulsar kicks is investigated. A