ترغب بنشر مسار تعليمي؟ اضغط هنا

Beaming Binaries - a New Observational Category of Photometric Binary Stars

71   0   0.0 ( 0 )
 نشر من قبل Shay Zucker
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new photometric space-borne survey missions CoRoT and Kepler will be able to detect minute flux variations in binary stars due to relativistic beaming caused by the line-of-sight motion of their components. In all but very short period binaries (P>10d), these variations will dominate over the ellipsoidal and reflection periodic variability. Thus, CoRoT and Kepler will discover a new observational class: photometric beaming binary stars. We examine this new category and the information that the photometric variations can provide. The variations that result from the observatory heliocentric velocity can be used to extract some spectral information even for single stars.



قيم البحث

اقرأ أيضاً

117 - B. Ulac{s} , C. Ulusoy 2014
We present results of new photometric observations of the contact binary system astrobj{HI Pup} as well as the radial velocity curve of the system. Time series multicolour photometry was obtained at the South African Astronomical Observatory (SAAO) u sing the 1-m Cassegrain Telescope. We applied a simultaneous solution to the $BVRI$ light and radial velocity curves in order to determine the physical parameters of the system. From an analysis of the new multicolour data, the physical parameters were found to be $M_1=1.22M_{odot}$, $M_2=0.23M_{odot}$, $R_1=1.44R_{odot}$, $R_2=0.67R_{odot}$, $L_1=3.3L_{odot}$, $L_2=0.7L_{odot}$. Our solution confirms that HI Pup has a typical A--type W UMa binary system characteristics.
75 - L. Mahy , L. A. Almeida , H. Sana 2019
A high fraction of massive stars are found to be binaries but only a few of them are reported as photometrically variable. By studying the populations of SB2 in the 30 Doradus region, we found a subset of them that have photometry from the OGLE proje ct and that display variations in their light curves related to orbital motions. The goal of this study is to determine the dynamical masses and radii of the 26 binary components to investigate the mass-discrepancy problem and to provide an empirical mass-luminosity relation for the LMC. We use the PHOEBE programme to perform a systematic analysis of the OGLE V and I light curves obtained for 13 binary systems in 30 Dor. We adopt Teff, and orbital parameters derived previously to obtain the inclinations of the systems and the parameters of the individual components. Three systems display eclipses in their light curves, while the others only display ellipsoidal variations. We classify two systems as over-contact, five as semi-detached, and four as detached. The two remaining systems have uncertain configurations due to large uncertainties on their inclinations. The fact that systems display ellipsoidal variations has a significant impact on the inclination errors. From the dynamical masses, luminosities, and radii, we provide LMC-based empirical mass-luminosity and mass-radius relations, and we compare them to other relations given for the Galaxy, the LMC, and the SMC. These relations differ for different mass ranges, but do not seem to depend on the metallicity regimes. We also compare the dynamical, spectroscopic, and evolutionary masses of the stars in our sample. While the dynamical and spectroscopic masses agree with each other, the evolutionary masses are systematically higher, at least for stars in semi-detached systems. This suggests that the mass discrepancy can be partly explained by past or ongoing interactions between the stars.
Eclipsing binary stars are rare and extremely valuable astrophysical laboratories that make possible precise determination of fundamental stellar parameters. Investigation of early-type chemically peculiar stars in eclipsing binaries provides importa nt information for understanding the origin and evolutionary context of their anomalous surface chemistry. In this study we discuss observations of eclipse variability in six mercury-manganese (HgMn) stars monitored by the TESS satellite. These discoveries double the number of known eclipsing HgMn stars and yield several interesting objects requiring further study. In particular, we confirm eclipses in HD 72208, thereby establishing this object as the longest-period eclipsing HgMn star. Among five other eclipsing binaries, reported here for the first time, HD 36892 and HD 53004 stand out as eccentric systems showing heartbeat variability in addition to eclipses. The latter object has the highest eccentricity among eclipsing HgMn stars and also exhibits tidally induced oscillations. Finally, we find evidence that HD 55776 may be orbited by a white dwarf companion.
The recently discovered subdwarf B (sdB) pulsator KIC7668647 is one of the 18 pulsating sdB stars detected in the Kepler field. It features a rich g-mode frequency spectrum, with a few low-amplitude p-modes at short periods. We use new ground-based low-resolution spectroscopy, and the near-continuous 2.88 year Kepler lightcurve, to reveal that KIC7668647 consists of a subdwarf B star with an unseen white-dwarf companion with an orbital period of 14.2d. An orbit with a radial-velocity amplitude of 39km/s is consistently determined from the spectra, from the orbital Doppler beaming seen by Kepler at 163ppm, and from measuring the orbital light-travel delay of 27 by timing of the many pulsations seen in the Kepler lightcurve. The white dwarf has a minimum mass of 0.40 M_sun. We use our high signal-to-noise average spectra to study the atmospheric parameters of the sdB star, and find that nitrogen and iron have abundances close to solar values, while helium, carbon, oxygen and silicon are underabundant relative to the solar mixture. We use the full Kepler Q06--Q17 lightcurve to extract 132 significant pulsation frequencies. Period-spacing relations and multiplet splittings allow us to identify the modal degree L for the majority of the modes. Using the g-mode multiplet splittings we constrain the internal rotation period at the base of the envelope to 46-48d as a first seismic result for this star. The few p-mode splittings may point at a slightly longer rotation period further out in the envelope of the star. From mode-visibility considerations we derive that the inclination of the rotation axis of the sdB in KIC7668647 must be around ~60 degrees. Furthermore, we find strong evidence for a few multiplets indicative of degree 3 <= L <= 8, which is another novelty in sdB-star observations made possible by Kepler.
High resolution UV spectra of stellar H I Lyman-alpha lines from the Hubble Space Telescope (HST) provide observational constraints on the winds of coronal main sequence stars, thanks to an astrospheric absorption signature created by the interaction between the stellar winds and the interstellar medium. We report the results of a new HST survey of M dwarf stars, yielding six new detections of astrospheric absorption. We estimate mass-loss rates for these detections, and upper limits for nondetections. These new constraints allow us to characterize the nature of M dwarf winds and their dependence on coronal activity for the first time. For a clear majority of the M dwarfs, we find winds that are weaker or comparable in strength to that of the Sun, i.e. Mdot<=1 Mdot_sun. However, two of the M dwarfs have much stronger winds: YZ CMi (M4 Ve; Mdot=30 Mdot_sun) and GJ 15AB (M2 V+M3.5 V; Mdot=10 Mdot_sun). Even these winds are much weaker than expectations if the solar relation between flare energy and coronal mass ejection (CME) mass extended to M dwarfs. Thus, the solar flare/CME relation does not appear to apply to M dwarfs, with important ramifications for the habitability of exoplanets around M dwarfs. There is evidence for some increase in Mdot with coronal activity as quantified by X-ray flux, but with much scatter. One or more other factors must be involved in determining wind strength besides spectral type and coronal activity, with magnetic topology being one clear possibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا