ترغب بنشر مسار تعليمي؟ اضغط هنا

AKARI infrared imaging of reflection nebulae IC4954 and IC4955

150   0   0.0 ( 0 )
 نشر من قبل Daisuke Ishihara Ph. D.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the observations of the reflection nebulae IC4954 and IC4955 region with the Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS) on board the infrared astronomical satellite AKARI during its performance verification phase. We obtained 7 band images from 7 to 160um with higher spatial resolution and higher sensitivities than previous observations. The mid-infrared color of the S9W (9um) and L18W (18um) bands shows a systematic variation around the exciting sources. The spatial variation in the mid-infrared color suggests that the star-formation in IC4954/4955 is progressing from south-west to north-east. The FIS data also clearly resolve two nebulae for the first time in the far-infrared. The FIS 4-band data from 65um to 160um allow us to correctly estimate the total infrared luminosity from the region, which is about one sixth of the energy emitted from the existing stellar sources. Five candidates for young stellar objects have been detected as point sources for the first time in the 11um image. They are located in the red S9W to L18W color regions, suggesting that current star-formation has been triggered by previous star-formation activities. A wide area map of the size of about 1 x 1 (deg^2) around the IC4954/4955 region was created from the AKARI mid-infrared all-sky survey data. Together with the HI 21cm data, it suggests a large hollow structure of a degree scale, on whose edge the IC4954/4955 region has been created, indicating star formation over three generations in largely different spatial scales.

قيم البحث

اقرأ أيضاً

We report the detection of eighteen infrared reflection nebulae (IRNe) in the $J$, $H$, & $Ks$ linear polarimetric observations of the NGC 6334 massive star-formation complex, of which 16 IRNe are new discoveries. Our images cover $sim$180 square arc minutes, one of the widest near-infrared polarization data in star-formation regions so far. These IRNe are most likely associated with embedded young OB stars at different evolutionary phases, showing a variety of sizes, morphologies, and polarization properties, which can be divided into four categories. We argue the different nebula characteristics to be a possible evolutionary sequence of circumstellar structures around young massive stars.
Near-infrared (2.5-5.0$,mu$m) low-resolution ($lambda/Deltalambda{sim}100$) spectra of 72 Galactic planetary nebulae (PNe) were obtained with the Infrared Camera (IRC) in the post-helium phase. The IRC, equipped with a $1{times}1$ window for spectros copy of a point source, was capable of obtaining near-infrared spectra in a slit-less mode without any flux loss due to a slit. The spectra show emission features including hydrogen recombination lines and the 3.3-3.5$,mu$m hydrocarbon features. The intensity and equivalent width of the emission features were measured by spectral fitting. We made a catalog providing unique information on the investigation of the near-infrared emission of PNe. In this paper, details of the observations and characteristics of the catalog are described.
131 - T. Onaka , H. Matsuhara , T. Wada 2007
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IR C is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10 x 10 and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25 away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We de scribe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.
We present the results of our preliminary study of all known Galactic PNe (included in the Kerber 2003 catalog) which are detected by the AKARI/FIS All-Sky Survey as identified in the AKARI/FIS Bright Source Catalog (BSC) Version Beta-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا