ترغب بنشر مسار تعليمي؟ اضغط هنا

Checking the reliability of equivalent width R23 for estimating metallicities of galaxies

42   0   0.0 ( 0 )
 نشر من قبل Yanchun Liang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. C. Liang




اسأل ChatGPT حول البحث

We verify whether the O/H abundances of galaxies can be derived from the equivalent width (EW) R23 instead of the extinction-corrected flux R23, and eventually propose a method of improving the reliability of this empirical method, which is often used for the non-flux calibrated spectra of galaxies. We select 37,173 star-forming galaxies from the SDSS-DR2, which offers a wide range of properties to test the EW method. The EW-R23 method brings with it a significant bias: for the bulk of SDSS galaxies, it may affect the determination of log(O/H) by factors ranging from -0.2 to 0.1 dex and for some galaxies by factors ranging from -0.5 to 0.2 dex. We characterize this discrepancy (or bias) by alpha = (I_[OII]/I_Hbeta)/(EW_[OII]/EW_Hbeta), which is virtually independent of dust extinction, while tightly correlating with Dn(4000), although at a lower significance, with (g-r) colors. The EW-R23 method cannot be used as a proxy for the extinction-corrected flux R23 method. From analytical third-order polynomial fits of alpha versus (g-r) colors, we have been able to correct the EW-R23 method. With this additional and easy correction, the EW-R23 method provides O/H abundance values similar to those derived from the extinction-corrected flux R23 method with an accuracy of ~0.1 dex for >92% of the SDSS galaxies.

قيم البحث

اقرأ أيضاً

We present a tool for measuring the equivalent width (EW) in high-resolution spectra. The Tool for Automatic Measurement of Equivalent width (TAME)provides the EWs of spectral lines by profile fitting in the automatic or the interactive mode, which c an yield a more precise result through the adjustment of the local continuum and fitting parameters. The automatic EW results of TAME have been verified by comparing them with the manual EW measurements by IRAF splot task using the high-resolution spectrum of the Sun, and measuring EWs in the synthetic spectra with different spectral resolutions and S/N ratios. The EWs measured by TAME agree well with manually measured values, with a dispersion of less than 2 mA. By comparing the input EWs for synthetic spectra and EWs measured by TAME, we conclude that it is reliable for measuring the EWs in a spectrum with a spectral resolution, R > 20000 and find that the errors in EWs is less than 1 mA for a S/N ratio > 100.
Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, Kepler, K2, and soon TESS and PLATO. Global seismic pipelines pr ovide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least around 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of FliPer enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.
Internet supercomputing is an approach to solving partitionable, computation-intensive problems by harnessing the power of a vast number of interconnected computers. For the problem of using network supercomputing to perform a large collection of ind ependent tasks, prior work introduced a decentralized approach and provided randomized synchronous algorithms that perform all tasks correctly with high probability, while dealing with misbehaving or crash-prone processors. The main weaknesses of existing algorithms is that they assume either that the emph{average} probability of a non-crashed processor returning incorrect results is inferior to $frac{1}{2}$, or that the probability of returning incorrect results is known to emph{each} processor. Here we present a randomized synchronous distributed algorithm that tightly estimates the probability of each processor returning correct results. Starting with the set $P$ of $n$ processors, let $F$ be the set of processors that crash. Our algorithm estimates the probability $p_i$ of returning a correct result for each processor $i in P-F$, making the estimates available to all these processors. The estimation is based on the $(epsilon, delta)$-approximation, where each estimated probability $tilde{p_i}$ of $p_i$ obeys the bound ${sf Pr}[p_i(1-epsilon) leq tilde{p_i} leq p_i(1+epsilon)] > 1 - delta$, for any constants $delta >0$ and $epsilon >0$ chosen by the user. An important aspect of this algorithm is that each processor terminates without global coordination. We assess the efficiency of the algorithm in three adversarial models as follows. For the model where the number of non-crashed processors $|P-F|$ is linearly bounded the time complexity $T(n)$ of the algorithm is $Theta(log{n})$, work complexity $W(n)$ is $Theta(nlog{n})$, and message complexity $M(n)$ is $Theta(nlog^2n)$.
[Abridged] We investigate the frequency of the various spectral types as a function both of the clusters properties and of the galaxies characteristics. In this way, using the same classification criteria adopted for higher redshift studies, we can c onsistently compare the properties of the local cluster population to those of their more distant counterparts. We describe a method we have developed to automatically measure the equivalent width of spectral lines in a robust way even in spectra with a non optimal signal to noise. Like this, we can derive a spectral classification reflecting the stellar content, based on the presence and strength of the [OII] and Hdelta lines. We are able to measure 4381 of the ~6000 originally observed spectra, in the fields of 48 clusters, 2744 of which are spectroscopically confirmed cluster members. The spectral classification is then analyzed as a function of galaxies luminosity, stellar mass, morphology, local density and host clusters global properties, and compared to higher redshift samples (MORPHS and EDisCS). The vast majority of galaxies in the local clusters population are passive objects, being also the most luminous and massive. At a magnitude limit of Mv<-18, galaxies in a post-starburst phase represent only ~11% of the cluster population and this fraction is reduced to ~5% at Mv<-19.5, which compares to the 18% at the same magnitude limit for high-z clusters. Normal star forming galaxies [e( c )] are proportionally more common in local clusters. The relative occurrence of post--starbursts suggests a very similar quenching efficiency in clusters at redshifts in the 0 to ~1 range. Furthermore, more important than the global environment, the local density seems to be the main driver of galaxy evolution in local clusters, at least with respect to their stellar populations content.
We quantify the distribution of [OIII]+H$beta$ line strengths at z$simeq$7 using a sample of 20 bright (M$_{mathrm{UV}}$ $lesssim$ $-$21) galaxies. We select these systems over wide-area fields (2.3 deg$^2$ total) using a new colour-selection which p recisely selects galaxies at z$simeq$6.63$-$6.83, a redshift range where blue Spitzer/IRAC [3.6]$-$[4.5] colours unambiguously indicate strong [OIII]$+$H$beta$ emission. These 20 galaxies suggest a log-normal [OIII]$+$H$beta$ EW distribution with median EW = 759$^{+112}_{-113}$ $mathrm{mathring{A}}$ and standard deviation = 0.26$^{+0.06}_{-0.05}$ dex. We find no evidence for strong variation in this EW distribution with UV luminosity. The typical [OIII]+H$beta$ EW at z$simeq$7 implied by our sample is considerably larger than that in massive star forming galaxies at z$simeq$2, consistent with a shift toward larger average sSFR (4.4 Gyr$^{-1}$) and lower metallicities (0.16 Z$_odot$). We also find evidence for the emergence of a population with yet more extreme nebular emission ([OIII]+H$beta$ EW$>$1200 $mathrm{mathring{A}}$) that is rarely seen at lower redshifts. These objects have extremely large sSFR ($>$30 Gyr$^{-1}$), as would be expected for systems undergoing a burst or upturn in star formation. While this may be a short-lived phase, our results suggest that 20% of the z$simeq$7 population has such extreme nebular emission, implying that galaxies likely undergo intense star formation episodes regularly at z$>$6. We argue that this population may be among the most effective ionizing agents in the reionization era, both in terms of photon production efficiency and escape fraction. We furthermore suggest that galaxies passing through this large sSFR phase are likely to be very efficient in forming bound star clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا