ترغب بنشر مسار تعليمي؟ اضغط هنا

A Corona Australis cloud filament seen in NIR scattered light I. Comparison with extinction of background stars

34   0   0.0 ( 0 )
 نشر من قبل Mika Juvela
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Juvela




اسأل ChatGPT حول البحث

With current near-infrared (NIR) instruments the near-infrared light scattered from interstellar clouds can be mapped over large areas. The surface brightness carries information on the line-of-sight dust column density. Therefore, scattered light could provide an important tool to study mass distribution in quiescent interstellar clouds at a high, even sub-arcsecond resolution. We wish to confirm the assumption that light scattering dominates the surface brightness in all NIR bands. Furthermore, we want to show that scattered light can be used for an accurate estimation of dust column densities in clouds with Av in the range 1-15mag. We have obtained NIR images of a quiescent filament in the Corona Australis molecular cloud. The observations provide maps of diffuse surface brightness in J, H, and Ks bands. Using the assumption that signal is caused by scattered light we convert surface brightness data into a map of dust column density. The same observations provide colour excesses for a large number of background stars. These data are used to derive an extinction map of the cloud. The two, largely independent tracers of the cloud structure are compared. Results. In regions below Av=15m both diffuse surface brightness and background stars lead to similar column density estimates. The existing differences can be explained as a result of normal observational errors and bias in the sampling of extinctions provided by the background stars. There is no indication that thermal dust emission would have a significant contribution even in the Ks band. The results show that, below Av=15mag, scattered light does provide a reliable way to map cloud structure. Compared with the use of background stars it can also in practice provide a significantly higher spatial resolution.

قيم البحث

اقرأ أيضاً

We study a northern part of the Corona Australis molecular cloud that consists of a filament and a dense sub-millimetre core inside the filament. Our aim is to measure dust temperature and sub-mm emissivity within the region. We also look for confirm ation that near-infrared (NIR) surface brightness can be used to study the structure of even very dense clouds. We extend our previous NIR mapping south of the filament. The dust colour temperatures are estimated using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived based on the reddening of background stars, NIR surface brightness, and thermal sub-mm dust emission are compared. A three dimensional toy model of the filament is used to study the effect of anisotropic illumination on near-infrared surface brightness and the reliability of dust temperature determination. Relative to visual extinction, the estimated emissivity at 870um is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values found in diffuse medium. A significant increase in the sub-millimetre emissivity seems to be excluded. In spite of saturation, NIR surface brightness was able to accurately pinpoint, and better than measurements of the colour excesses of background stars, the exact location of the column density maximum. Both near- and far-infrared data show that the intensity of the radiation field is higher south of the filament.
Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space miss ion to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photometric data set over a field of 128 deg$^{2}$ around the dark clouds of the region. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before. Our sample of members covers the magnitude range between $Ggtrsim5$ mag and $Glesssim20$ mag, and it reveals the existence of two kinematically and spatially distinct subgroups. There is a distributed `off-cloud population of stars located in the north of the dark clouds that is twice as numerous as the historically known `on-cloud population that is concentrated around the densest cores. By comparing the location of the stars in the HR-diagram with evolutionary models, we show that these two populations are younger than 10 Myr. Based on their infrared excess emission, we identify 28 Class II and 215 Class III stars among the sources with available infrared photometry, and we conclude that the frequency of Class II stars (i.e. `disc-bearing stars) in the on-cloud region is twice as large as compared to the off-cloud population. The distance derived for the Corona-Australis region based on this updated census is $d=149.4^{+0.4}_{-0.4}$ pc, which exceeds previous estimates by about 20 pc.In this paper we provide the most complete census of stars in Corona-Australis available to date that can be confirmed with Gaia data.
The R CrA star-forming region has a small dark cloud with quite a number of protostars, T Tauri stars, and some Herbig Ae/Be stars, plus a number of weak-line T Tauri stars around the cloud found by ROSAT follow-up observations. We searched for mul tiples among the young stars in and around the R CrA cloud in order to investigate multiplicity in this region. We performed interferometric and imaging observations with the speckle camera SHARP I at the ESO 3.5m NTT and adaptive optics observation with ADONIS at the ESO 3.6m telescope, all in the near-infrared bands JHK obtained in the years 1995, 2000, and 2001. We found 13 new binaries among the young stars in CrA between 0.13 arcsec (the diffraction limit) and 6 arcsec (set as an upper separation limit to avoid contamination by chance alignments). While most multiples in CrA are binaries, there are also one quadruple (TY CrA), and one triple (HR 7170) which may form a quintuple together with the binary HR 7169. One of the newly detected companions with a large magnitude difference found near the M3-5 type T Tauri star [MR 81] Ha 17 could be a brown dwarf or an infrared companion with an edge-on disk. Among seven Herbig Ae/Be stars in CrA, six are multiple. The multiplicity frequency in CrA is as high as in similar star forming regions. By comparing with the period distribution of main-sequence stars and extrapolating to separations not probed in this survey, we conclude that the companion-star frequency is 95+/-23 %; i.e. the average number of companions per primary is 0.95.
We uncover the H2 flows in the Corona Australis molecular cloud and in particular identify the flows from the Coronet cluster. Near-infrared H2 v=1--0 S(1), 2.12micron-line, narrow-band imaging survey of the R CrA cloud core was carried out. We ident ify the best candidate-driving source for each outflow by comparing the flow properties, available proper motions, and the known/estimated properties of the driving sources. We also adopted the thumbrule of outflow power as proportional to source luminosity and inversely proportional to the source age to reach a consensus. Results: Continuum-subtracted, narrow-band images reveal several new Molecular Hydrogen emission-line Objects (MHOs). Together with previously known MHOs and Herbig-Haro objects we catalog at least 14 individual flow components of which 11 appear to be driven by the RCrA aggregate members. The flows originating in the Coronet cluster have lengths of ~0.1-0.2 pc. Eight out of nine submillimeter cores mapped in the Coronet cluster region display embedded stars driving an outflow component. Roughly 80% of the youngest objects in the Coronet are associated with outflows. The MHO flows to the west of the Coronet display lobes moving to the west and vice-versa, resulting in nondetections of the counter lobe in our deep imaging. We speculate that these counterflows may be experiencing a stunting effect in penetrating the dense central core. Conclusions:Although this work has reduced the ambiguities for many flows in the Coronet region, one of the brightest H2 feature (MHO2014) and a few fainter features in the region remain unassociated with a clear driving source. The flows from Coronet, therefore, continue to be interesting targets for future studies.
[ABRIDGED] Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting GOSSS, which is generating a large sample of O stars with a ccurate spectral types within several kpc of the Sun. Aims. To obtain a global picture of the properties of dust extinction in the solar neighborhood based on optical-NIR photometry of O stars with accurate spectral types. Methods. We have processed a photometric set with the CHORIZOS code to measure the amount and type of extinction towards 562 O-type stellar systems. We have tested three different families of extinction laws and analyzed our results with the help of additional archival data. Results. The Maiz Apellaniz et al. (2014) family of extinction laws provides a better description of Galactic dust that either the Cardelli et al. (1989) or Fitzpatrick (1999) families, so it should be preferentially used. In many cases O stars and late-type stars experience similar amounts of extinction at similar distances but some O stars are located close to the molecular clouds left over from their births and have larger extinctions than the average for nearby late-type populations. In qualitative terms, O stars experience a more diverse extinction than late-type stars, as some are affected by the small-grain-size, low-R_5495 effect of molecular clouds and others by the large-grain-size, high-R_5495 effect of H II regions. Late-type stars experience a narrower range of grain sizes or R_5495, as their extinction is predominantly caused by the average, diffuse ISM. We propose that the reason for the existence of large-grain-size, high-R_5495 regions in the ISM in the form of H II regions and hot-gas bubbles is the selective destruction of small dust grains by EUV photons and possibly by thermal sputtering by atoms or ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا