ﻻ يوجد ملخص باللغة العربية
We show that mid infrared transmission spectroscopy of a quantum cascade laser provides clear cut information on changes in charge location at different bias. Theoretical simulations of the evolution of the gain/absorption spectrum for the $lambda sim$ 7.4 $mu$m InGaAs/AlInAs/InP quantum cascade laser have been compared with the experimental findings. Transfer of electrons between the ground states in the active region and the states in the injector goes in hand with a decrease of discrete intersubband absorption peaks and an increase of broad high-energy absorption towards the continuum delocalised states above the barriers.
A model of sequential resonant tunneling transport between two-dimensional subbands that takes into account explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum cascade lasers where resonant tun
Resonant phonon depopulation terahertz quantum cascade lasers based on vertical and diagonal lasing transitions are systematically compared using a well established ensemble Monte Carlo approach. The analysis shows that for operating temperatures bel
Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integr
High performance of InP-based quantum cascade lasers emitting at $lambda$ ~ 9$mu$m are reported. Thick electroplated gold layer was deposited on top of the laser to improve heat dissipation. With one facet high reflection coated, the devices produce
We derive a density matrix (DM) theory for quantum cascade lasers (QCLs) that describes the influence of scattering on coherences through a generalized scattering superoperator. The theory enables quantitative modeling of QCLs, including localization