ﻻ يوجد ملخص باللغة العربية
We investigate the role of quantum coherence in the efficiency of excitation transfer in a ring-hub arrangement of interacting two-level systems, mimicking a light-harvesting antenna connected to a reaction center as it is found in natural photosynthetic systems. By using a quantum jump approach, we demonstrate that in the presence of quantum coherent energy transfer and energetic disorder, the efficiency of excitation transfer from the antenna to the reaction center depends intimately on the quantum superposition properties of the initial state. In particular, we find that efficiency is sensitive to symmetric and asymmetric superposition of states in the basis of localized excitations, indicating that initial state properties can be used as a efficiency control parameter at low temperatures.
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harv
Several recent studies of energy transfer in photosynthetic light harvesting complexes have revealed a subtle interplay between coherent and decoherent dynamic contributions to the overall transfer efficiency in these open quantum systems. In this wo
The non-equilibrium stationary coherences that form in donor-acceptor systems are investigated to determine their relationship to the efficiency of energy transfer to a neighboring reaction center. It is found that the effects of asymmetry in the dim
Quantum coherence is one of the most striking features of quantum mechanics rooted in the superposition principle. Recently it has been demonstrated that it is possible to harvest the quantum coherence from a coherent scalar field. In order to explor
We propose a scheme to simulate the exciton energy transfer (EET) of photosynthetic complexes in a quantum superconducting circuit system. Our system is composed of two pairs of superconducting charge qubits coupled to two separated high-Q supercondu