ﻻ يوجد ملخص باللغة العربية
We report electrical transport measurements of arrays of PbSe nanocrystals forming the channels of field effect transistors. We measure the current in these devices as a function of source-drain voltage, gate voltage and temperature. Annealing is necessary to observe measurable current after which a simple model of hopping between intrinsic localized states describes the transport properties of the nanocrystal solid. We find that the majority carriers are holes, which are thermally released from acceptor states. At low source-drain voltages, the activation energy for the conductivity is given by the energy required to generate holes plus the activation over barriers resulting from site disorder. At high source-drain voltages the activation energy is given by the former only. The thermal activation energy of the zero-bias conductance indicates that the Fermi energy is close to the highest-occupied valence level, the 1Sh state, and this is confirmed by field-effect measurements, which give a density of states of approximately eight per nanocrystal as expected from the degeneracy of the 1Sh state.
Positron annihilation lifetime spectroscopy (PALS) and positron-electron momentum density (PEMD) studies on multilayers of PbSe nanocrystals (NCs), supported by transmission electron microscopy (TEM), show that positrons are strongly trapped at NC su
The potential of semiconductors assembled from nanocrystals (NC semiconductors) has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectri
We present a theory for carrier transport in semiconducting nanoscale heterostructures that emphasizes the effects of strain at the interface between two different crystal structures. An exactly solvable model shows that the interface region, or junc
We report electron transport measurements through nano-scale devices consisting of 1 to 3 Prussian blue analog (PBA) nanocrystals connected between two electrodes. We compare two types of cubic nanocrystals, CsCoFe (15 nm) and CsNiCr (6 nm), deposite
We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurre