ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo-Riemannian Jacobi-Videv Manifolds

201   0   0.0 ( 0 )
 نشر من قبل Peter B. Gilkey
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We exhibit several families of Jacobi-Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi-Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.



قيم البحث

اقرأ أيضاً

126 - Yibin Ren , Guilin Yang 2017
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of E ells-Sampsons existence theorem. We also discuss the uniqueness of the pseudo-harmonic representative of its homotopy class which is a generalization of Hartman theorem, provided that the target manifold has negative sectional curvature.
231 - Yuxin Dong , Ye-Lin Ou 2015
In this paper, we derived biharmonic equations for pseudo-Riemannian submanifolds of pseudo-Riemannian manifolds which includes the biharmonic equations for submanifolds of Riemannian manifolds as a special case. As applications, we proved that a pse udo-umbilical biharmonic pseudo-Riemannian submanifold of a pseudo-Riemannian manifold has constant mean curvature, we completed the classifications of biharmonic pseudo-Riemannian hypersurfaces with at most two distinct principal curvatures, which were used to give four construction methods to produce proper biharmonic pseudo-Riemannian submanifolds from minimal submanifolds. We also made some comparison study between biharmonic hypersurfaces of Riemannian space forms and the space-like biharmonic hypersurfaces of pseudo-Riemannian space forms.
172 - R. M. Friswell , C. M. Wood 2015
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo -Riemannian quadrics. A para-Kaehler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.
We generalize a Bernstein-type result due to Albujer and Alias, for maximal surfaces in a curved Lorentzian product 3-manifold of the form $Sigma_1times mathbb{R}$, to higher dimension and codimension. We consider $M$ a complete spacelike graphic sub manifold with parallel mean curvature, defined by a map $f: Sigma_1to Sigma_2$ between two Riemannian manifolds $(Sigma_1^m, g_1)$ and $(Sigma^n_2, g_2)$ of sectional curvatures $K_1$ and $K_2$, respectively. We take on $Sigma_1times Sigma_2$ the pseudo-Riemannian product metric $g_1-g_2$. Under the curvature conditions, $mathrm{Ricci}_1 geq 0$ and $K_1geq K_2$, we prove that, if the second fundamental form of $M$ satisfies an integrability condition, then $M$ is totally geodesic, and it is a slice if $mathrm{Ricci}_1(p)>0$ at some point. For bounded $K_1$, $K_2$ and hyperbolic angle $theta$, we conclude $M$ must be maximal. If $M$ is a maximal surface and $K_1geq K_2^+$, we show $M$ is totally geodesic with no need for further assumptions. Furthermore, $M$ is a slice if at some point $pin Sigma_1$, $K_1(p)> 0$, and if $Sigma_1$ is flat and $K_2<0$ at some point $f(p)$, then the image of $f$ lies on a geodesic of $Sigma_2$.
In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special case s of holomorphic Jacobi manifolds. We show that holomorphic Jacobi structures yield a much richer framework than that of holomorphic Poisson structures. We also discuss the relationship between holomorphic Jacobi structures, generalized contact bundles and Jacobi-Nijenhuis structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا