ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum turbulence in propagating superfluid vortex front

205   0   0.0 ( 0 )
 نشر من قبل Vladimir Eltsov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental, numerical and theoretical studies of a vortex front propagating into a region of vortex-free flow of rotating superfluid 3He-B. We show that the nature of the front changes from laminar through quasi-classical turbulent to quantum turbulent with decreasing temperature. Our experiment provides the first direct measurement of the dissipation rate in turbulent vortex dynamics of 3He-B and demonstrates that the dissipation is temperature- and mutual friction-independent in the T->0 limit, and is strongly suppressed when the Kelvin-wave cascade on vortex lines is predicted to be involved in the turbulent energy transfer to smaller length scales.

قيم البحث

اقرأ أيضاً

Vortex dynamics in 3He-B is divided by the temperature dependent damping into a high-temperature regime, where the number of vortices is conserved, and a low-temperature regime, where rapid vortex multiplication takes place in a turbulent burst. We i nvestigate experimentally the hydrodynamic transition between these two regimes by injecting seed vortex loops into vortex-free rotating flow. The onset temperature of turbulence is dominated by the roughly exponential temperature dependence of vortex friction, but its exact value is found to depend on the injection method.
Describing superfluid turbulence at intermediate scales between the inter-vortex distance and the macroscale requires an acceptable equation of motion for the density of quantized vortex lines $cal{L}$. The closure of such an equation for superfluid inhomogeneous flows requires additional inputs besides $cal{L}$ and the normal and superfluid velocity fields. In this paper we offer a minimal closure using one additional anisotropy parameter $I_{l0}$. Using the example of counterflow superfluid turbulence we derive two coupled closure equations for the vortex line density and the anisotropy parameter $I_{l0}$ with an input of the normal and superfluid velocity fields. The various closure assumptions and the predictions of the resulting theory are tested against numerical simulations.
Steady-state turbulent motion is created in superfluid 3He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.
The quantization of vortex lines in superfluids requires the introduction of their density $C L(B r,t)$ in the description of quantum turbulence. The space homogeneous balance equation for $C L(t)$, proposed by Vinen on the basis of dimensional and p hysical considerations, allows a number of competing forms for the production term $C P$. Attempts to choose the correct one on the basis of time-dependent homogeneous experiments ended inconclusively. To overcome this difficulty we announce here an approach that employs an inhomogeneous channel flow which is excellently suitable to distinguish the implications of the various possible forms of the desired equation. We demonstrate that the originally selected form which was extensively used in the literature is in strong contradiction with our data. We therefore present a new inhomogeneous equation for $C L(B r,t)$ that is in agreement with our data and propose that it should be considered for further studies of superfluid turbulence.
127 - S. Ikawa , M. Tsubota 2015
We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity $bm{v}_s$ and normal fluid velocity $bm{v}_n$ flow in the same direction. Quantum turbulence for ther mal counterflow has been long studied theoretically and experimentally. In recent years, experiments of coflow are performed to observe different features from thermal counterflow. By supposing that $bm{v}_s$ is uniform and $bm{v}_n$ takes the Hagen-Poiseiulle profile, our simulation finds that quantized vortices are distributed inhomogeneously. Vortices like to accumulate on the surface of a cylinder with $bm{v}_s simeq bm{v}_n$. Consequently, the vortex configuration becomes degenerate from three-dimensional to two-dimensional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا