ﻻ يوجد ملخص باللغة العربية
Motivated by the recently observed pattern of unidirectional domains in high-T_c superconductors [Y. Kohsaka et al., Science 315, 1380 (2007)], we investigate the emergence of spontaneous modulations in the d-wave superconducting resonating valence bond phase using the t-J model at x=1/8 doping. Half-filled charge domains separated by four lattice spacings are found to form along one of the crystal axis leading to modulated superconductivity with out-of-phase d-wave order parameters in neighboring domains. Both renormalized mean-field theory and variational Monte Carlo calculations yield that the energies of modulated and uniform phases are very close to each other.
Unravelling competing orders emergent in doped Mott insulators and their interplay with unconventional superconductivity is one of the major challenges in condensed matter physics. To explore possible superconductivity state in the doped Mott insulat
A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) proposed very recently is used for the description of superconducting (SC) ground state in the two-dimensional square-lattice $t$-$J$ model with the hopping electron amplitude
Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered
Determination of the parameter regime in which two holes in the t-J model form a bound state represents a long standing open problem in the field of strongly correlated systems. By applying and systematically improving the exact diagonalization metho
A comparison of microscopic theories of superconductivity in the limit of strong electron correlations is presented. We consider results for the two-dimensional t-J model obtained within the projection technique for the Green functions in terms of th