ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Laboratory Transition Probabilities for Neutral Chromium and Re-determination of the Chromium Abundance for the Sun and Three Stars

58   0   0.0 ( 0 )
 نشر من قبل Jennifer Sobeck
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Branching fraction measurements from Fourier transform spectra in conjunction with published radiative lifetimes are used to determine transition probabilities for 263 lines of neutral chromium. These laboratory values are employed to derive a new photospheric abundance for the Sun: log $epsilon$(Cr I)$_{odot}$ = 5.64$pm$0.01 ($sigma = 0.07$). These Cr I solar abundances do not exhibit any trends with line strength nor with excitation energy and there were no obvious indications of departures from LTE. In addition, oscillator strengths for singly-ionized chromium recently reported by the FERRUM Project are used to determine: log $epsilon$(Cr II)$_{odot}$ = 5.77$pm$0.03 ($sigma = 0.13$). Transition probability data are also applied to the spectra of three stars: HD 75732 (metal-rich dwarf), HD 140283 (metal-poor subgiant), and CS 22892-052 (metal-poor giant). In all of the selected stars, Cr I is found to be underabundant with respect to Cr II. The possible causes for this abundance discrepancy and apparent ionization imbalance are discussed.

قيم البحث

اقرأ أيضاً

Recent radiative lifetime measurements accurate to +/- 5% (Stockett et al. 2007, J. Phys. B 40, 4529) using laser-induced fluorescence (LIF) on 8 even-parity and 62 odd-parity levels of Er II have been combined with new branching fractions measured u sing a Fourier transform spectrometer (FTS) to determine transition probabilities for 418 lines of Er II. This work moves Er II onto the growing list of rare earth spectra with extensive and accurate modern transition probability measurements using LIF plus FTS data. This improved laboratory data set has been used to determine a new solar photospheric Er abundance, log epsilon = 0.96 +/- 0.03 (sigma = 0.06 from 8 lines), a value in excellent agreement with the recommended meteoric abundance, log epsilon = 0.95 +/- 0.03. Revised Er abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, HD 221170, HD 115444, and CS 31082-001. For these five stars the average Er/Eu abundance ratio, <log epsilon (Er/Eu)> = 0.42, is in very good agreement with the solar-system r-process ratio. This study has further strengthened the finding that r-process nucleosynthesis in the early Galaxy which enriched these metal-poor stars yielded a very similar pattern to the r-process which enriched later stars including the Sun.
We report new branching fraction measurements for 199 UV and optical transitions of Hf II. These transitions range in wavelength (wavenumber) from 2068- 6584 A (48322-15183 cm-1) and originate in 17 odd-parity upper levels ranging in energy from 3857 8-53227 cm-1. The branching fractions are combined with radiative lifetimes reported in an earlier study to produce a set of transition probabilities and log(gf) values with accuracy ranging from 5-25%. Comparison is made to transition probabilities from the literature where such data exist. We use these new transition probabilities to derive improved Hf abundances in two metal-poor stars. HD 196944 is enhanced in s-process elements, and we derive log epsilon (Hf) = -0.72 +/- 0.03 (sigma = 0.09) from 12 Hf II lines. HD 222925 is enhanced in r-process elements, and we derive log epsilon (Hf) = 0.32 +/- 0.03 (sigma = 0.11) from 20 Hf II lines. These measurements greatly expand the number of potentially useful Hf II lines for analysis in UV and optical spectra.
Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.
We have measured the deca-triplet s-wave scattering length of the bosonic chromium isotopes $^{52}$Cr and $^{50}$Cr. From the time constants for cross-dimensional thermalization in atomic samples we have determined the magnitudes $|a(^{52}Cr)|=(170 p m 39)a_0$ and $|a(^{50}Cr)|=(40 pm 15)a_0$, where $a_0=0.053nm$. By measuring the rethermalization rate of $^{52}$Cr over a wide temperature range and comparing the temperature dependence with the effective-range theory and single-channel calculations, we have obtained strong evidence that the sign of $a(^{52}Cr)$ is positive. Rescaling our $^{52}$Cr model potential to $^{50}$Cr strongly suggests that $a(^{50}Cr)$ is positive, too.
Thin coatings of Chromium oxide have been used for applications as absorbing material in solar cells, as protections for magnetic data recording devices and as shields in flexible solar cells. Thin coatings of pure chromium were vacuum deposited on a glass substrate using hot electrons from tungsten filament. These coatings were then treated with a nanosecond and femtosecond laser in ambient conditions. The microstructure, morphology and the color of the coatings treated with laser sources were modified and there was a formation of an oxide layer due to the heat dissipation on the chromium coating from the energetic photons. High-resolution scanning electron microscope studies showed the morphological evolution that are directly correlated with the laser fluence of both the nanosecond and femtosecond lasers. This morphological evolution was accompanied by the microstructural change as observed from the x-ray diffraction patterns, the chromaticity response of the coating was studied by UV-Vis spectrometer and the response of the coating in the visible region evolved with the laser fluences. The Rutherford backscattering depth profiling of the laser treated coatings revealed the diffusion of oxygen atoms in the coating as a result of laser treatment fluence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا