ﻻ يوجد ملخص باللغة العربية
We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respect to changes in the complexity, and that the dynamics which emerges is controlled by a non-equilibrium critical point. The mechanism is analogous to the development of the cascade in fluid turbulence.
We perform individual-based Monte Carlo simulations in a community consisting of two predator species competing for a single prey species, with the purpose of studying biodiversity stabilization in this simple model system. Predators are characterize
It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield lo
Population dynamics and evolutionary genetics underly the structure of ecosystems, changing on the same timescale for interacting species with rapid turnover, such as virus (e.g. HIV) and immune response. Thus, an important problem in mathematical mo
We investigate the competing effects and relative importance of intrinsic demographic and environmental variability on the evolutionary dynamics of a stochastic two-species Lotka-Volterra model by means of Monte Carlo simulations on a two-dimensional
Trait-mediated indirect effects are increasingly acknowledged as important components in the dynamics of ecological systems. The hamiltonian form of the LV equations is traditionally modified by adding density dependence to the prey variable and func