ترغب بنشر مسار تعليمي؟ اضغط هنا

Enumerating the Saneblidze-Umble diagonal terms

111   0   0.0 ( 0 )
 نشر من قبل Mikael Vejdemo-Johansson
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The author presents a computer implementation, calculating the terms of the Saneblidze-Umble diagonals on the permutahedron and the associahedron. The code is analyzed for correctness and presented in the paper, the source code of which simultaneously represents both the paper and the program.



قيم البحث

اقرأ أيضاً

A flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type (Theorem 2.10, part 1). This result is closely related to similar results established by Barmak and Minian (Adv. in Math., 218 (2008), 87-104) in the framework of posets and we give the relation between the two approaches (theorems 3.5 and 3.7). We conclude with a question about the relation between the s-homotopy and the graph homotopy defined by Chen, Yau and Yeh (Discrete Math., 241(2001), 153-170).
We find by applying MacMahons partition analysis that all magic labellings of the cube are of eight types, each generated by six basis elements. A combinatorial proof of this fact is given. The number of magic labellings of the cube is thus reobtaine d as a polynomial in the magic sum of degree $5$. Then we enumerate magic distinct labellings, the number of which turns out to be a quasi-polynomial of period 720720. We also find the group of symmetry can be used to significantly simplify the computation.
Given a strictly increasing sequence $mathbf{t}$ with entries from $[n]:={1,ldots,n}$, a parking completion is a sequence $mathbf{c}$ with $|mathbf{t}|+|mathbf{c}|=n$ and $|{tin mathbf{t}mid tle i}|+|{cin mathbf{c}mid cle i}|ge i$ for all $i$ in $[n] $. We can think of $mathbf{t}$ as a list of spots already taken in a street with $n$ parking spots and $mathbf{c}$ as a list of parking preferences where the $i$-th car attempts to park in the $c_i$-th spot and if not available then proceeds up the street to find the next available spot, if any. A parking completion corresponds to a set of preferences $mathbf{c}$ where all cars park. We relate parking completions to enumerating restricted lattice paths and give formulas for both the ordered and unordered variations of the problem by use of a pair of operations termed textbf{Join} and textbf{Split}. Our results give a new volume formula for most Pitman-Stanley polytopes, and enumerate the signature parking functions of Ceballos and Gonzalez DLeon.
We introduce a new algorithm for enumerating chambers of hyperplane arrangements which exploits their underlying symmetry groups. Our algorithm counts the chambers of an arrangement as a byproduct of computing its characteristic polynomial. We showca se our julia implementation, based on OSCAR, on examples coming from hyperplane arrangements with applications to physics and computer science.
We show that any connected Cayley graph $Gamma$ on an Abelian group of order $2n$ and degree $tilde{Omega}(log n)$ has at most $2^{n+1}(1 + o(1))$ independent sets. This bound is tight up to to the $o(1)$ term when $Gamma$ is bipartite. Our proof is based on Sapozhenkos graph container method and uses the Pl{u}nnecke-Rusza-Petridis inequality from additive combinatorics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا