ﻻ يوجد ملخص باللغة العربية
A new class of plurisubharmonic functions on the octonionic plane O^2= R^{16} is introduced. An octonionic version of theorems of A.D. Aleksandrov and Chern- Levine-Nirenberg, and Blocki are proved. These results are used to construct new examples of continuous translation invariant valuations on convex subsets of O^2=R^{16}. In particular a new example of Spin(9)-invariant valuation on R^{16} is given.
The dimensions of the spaces of $k$-homogeneous $mathrm{Spin}(9)$-invariant valuations on the octonionic plane are computed using results from the theory of differential forms on contact manifolds as well as octonionic geometry and representation the
The notion of a valuation on convex bodies is very classical. The notion of a valuation on a class of functions was recently introduced and studied by M. Ludwig and others. We study an explicit relation between continuous valuations on convex functio
The existence of a homogeneous decomposition for continuous and epi-translation invariant valuations on super-coercive functions is established. Continuous and epi-translation invariant valuations that are epi-homogeneous of degree $n$ are classified
There is a well known construction of weakly continuous valuations on convex compact polytopes in R^n. In this paper we investigate when a special case of this construction gives a valuation which extends by continuity in the Hausdorff metric to all
Very recently J. Kotrbaty has proven general inequalities for translation invariant smooth valuations formally analogous to the Hodge- Riemann bilinear relations in the Kahler geometry. The goal of this note is to apply Kotrbatys theorem to obtain a