ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Thermal X-ray Properties of Rotation Powered Pulsars and Their Wind Nebulae

212   0   0.0 ( 0 )
 نشر من قبل Zhuo Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a statistical study of the non-thermal X-ray emission of 27 young rotation powered pulsars (RPPs) and 24 pulsar wind nebulae (PWNe) by using the Chandra and the XMM-Newton observations, which with the high spatial resolutions enable us to spatially resolve pulsars from their surrounding PWNe. We obtain the X-ray luminosities and spectra separately for RPPs and PWNe, and then investigate their distribution and relation to each other as well as the relation with the pulsar rotational parameters. In the pair-correlation analysis we find that: (1) the X-ray (2-10 keV) luminosities of both pulsar and PWN (L_{psr} and L_{pwn}) display a strong correlation with pulsar spin down power Edot and characteristic age, and the scalings resulting from a simple linear fit to the data are L_{psr} propto Edot^{0.92 pm 0.04} and L_{pwn} propto Edot^{1.45 pm 0.08} (68% confidence level), respectively, however, both the fits are not statistically acceptable; (2) L_{psr} also shows a possible weak correlation with pulsar period P and period derivative Pdot, whereas L_{pwn} manifests a similar weak correlation with Pdot only; (3) The PWN photon index Gamma_{pwn} is positively correlated with L_{pwn} and L_{pwn}/Edot. We also found that the PWN X-ray luminosity is typically 1 to 10 times larger than that from the underlying pulsar, and the PWN photon indices span a range of ~1.5 to ~2. The statistic study of PWN spectral properties supports the particle wind model in which the X-ray emitting electrons are accelerated by the termination shock of the wind.



قيم البحث

اقرأ أيضاً

138 - Jacco Vink 2010
We present a statistical analysis of the X-ray luminosity of rotation powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov (2008) and we complement this with an analysis of the gamma-ray-emission of Fermi detected pul sars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and gamma-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient gamma-ray emitters. We divided the X-ray sample in a young (Tau < 1.7x10^4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and gamma-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L_X ~ Pdot^3/P^6. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency eta = L_X/Edot = ~ 8x10^-5. For the gamma-ray luminosity we confirm that L_gamma ~ Edot^(1/2). We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.
To look for possible phenomenological connections between pulsars timing properties and emissions from pulsar wind nebulae and their pulsars, we studied the power-law component of the X-ray emissions from 35 pulsar wind nebulae which have a detected pulsar in X-rays. Our major results are in the following: (1) The power-law component of the X-ray luminosities, in the energy range from 0.5 keV to 8 keV, of the nebulae and of the pulsar both show a strong correlation with the pulsar spin-down power ($dot{E}$), consistent with earlier studies. However, equally significant correlations with the magnetic field strength at the light cylinder ($B_{rm lc}$) are also found. The similar significance level of the correlations with $dot{E}$ and with $B_{rm lc}$ suggests that not only $dot{E}$ but also $B_{rm lc}$ plays an important role in understanding these power-law emissions. (2) Thermal X-ray emissions are detected in 12 pulsars among the 35 samples. With derived temperature as one additional variable, we found that the photon indices of pulsars non-thermal X-ray power-law spectra can be well described by a linear function of $log P$, $logdot{P}$ and temperature logarithm $log T$. It indicates that the surface temperature of neutron stars plays an important role in determining the energy distribution of the radiating pair plasma in pulsars magnetospheres.
The aim of the present paper is to investigate a possible contribution of the rotation-powered pulsars and pulsar wind nebulae to the population of ultraluminous X-ray sources (ULXs). We first develop an analytical model for the evolution of the dist ribution function of pulsars over the spin period and find both the steady-state and the time-dependent solutions. Using the recent results on the X-ray efficiency dependence on pulsar characteristic age, we then compute the X-ray luminosity function (XLF) of rotation-powered pulsars. In a general case it has a broken power-law shape with a high luminosity cutoff, which depends on the distributions of the birth spin period and the magnetic field. Using the observed XLF of sources in the nearby galaxies and the condition that the pulsar XLF does not exceed that, we find the allowed region for the parameters describing the birth period distribution. We find that the mean pulsar period should be greater than 10-40 ms. These results are consistent with the constraints obtained from the X-ray luminosity of core-collapse supernovae. We estimate that the contribution of the rotation-powered pulsars to the ULX population is at a level exceeding 3 per cent. For a wide birth period distribution, this fraction grows with luminosity and above 10E40 erg/s pulsars can dominate the ULX population.
197 - S. Guillot , M. Kerr , P. S. Ray 2019
NICER observed several rotation-powered millisecond pulsars to search for or confirm the presence of X-ray pulsations. When broad and sine-like, these pulsations may indicate thermal emission from hot polar caps at the magnetic poles on the neutron s tar surface. We report confident detections ($ge4.7sigma$ after background filtering) of X-ray pulsations for five of the seven pulsars in our target sample: PSR J0614-3329, PSR J0636+5129, PSR J0751+1807, PSR J1012+5307, and PSR J2241-5236, while PSR J1552+5437 and PSR J1744-1134 remain undetected. Of those, only PSR J0751+1807 and PSR J1012+5307 had pulsations previously detected at the 1.7$sigma$ and almost 3$sigma$ confidence levels, respectively, in XMM-Newton data. All detected sources exhibit broad sine-like pulses, which are indicative of surface thermal radiation. As such, these MSPs are promising targets for future X-ray observations aimed at constraining the neutron star mass-radius relation and the dense matter equation of state using detailed pulse profile modeling. Furthermore, we find that three of the detected millisecond pulsars exhibit a significant phase offset between their X-ray and radio pulses.
Nuclear-powered X-ray millisecond pulsars are the third type of millisecond pulsars, which are powered by thermonuclear fusion processes. The corresponding brightness oscillations, known as burst oscillations, are observed during some thermonuclear X -ray bursts, when the burning and cooling accreted matter gives rise to an azimuthally asymmetric brightness pattern on the surface of the spinning neutron star. Apart from providing neutron star spin rates, this X-ray timing feature can be a useful tool to probe the fundamental physics of neutron star interior and surface. This chapter presents an overview of the relatively new field of nuclear-powered X-ray millisecond pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا