ﻻ يوجد ملخص باللغة العربية
Starting from an operad, one can build a family of posets. From this family of posets, one can define an incidence Hopf algebra. By another construction, one can also build a group directly from the operad. We then consider its Hopf algebra of functions. We prove that there exists a surjective morphism from the latter Hopf algebra to the former one. This is illustrated by the case of an operad built on rooted trees, the $NAP$ operad, where the incidence Hopf algebra is identified with the Connes-Kreimer Hopf algebra of rooted trees.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th
In this paper we study the theory of cleft extensions for a weak bialgebra H. Among other results, we determine when two unitary crossed products of an algebra A by H are equivalent and we prove that if H is a weak Hopf algebra, then the categories o
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scala
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en