ﻻ يوجد ملخص باللغة العربية
Residual wavefront errors in optical elements limit the performance of coronagraphs. To improve their efficiency, different types of devices have been proposed to correct or calibrate these errors. In this paper, we study one of these techniques proposed by Baudoz et al. 2006 and called Self-Coherent Camera (SCC). The principle of this instrument is based on the lack of coherence between the stellar light and the planet that is searched for. After recalling the principle of the SCC, we simulate its performance under realistic conditions and compare it with the performance of differential imaging.
The exploration of circumstellar environments by means of direct imaging to search for Earth-like exoplanets is one of the challenges of modern astronomy. One of the current limitations are evolving non-common path aberrations (NCPA) that originate f
Direct imaging and spectral characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of t
High contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. But this can be challenging because of the planet-to-star small angular separation and high flux ratio. Recen
The two main advantages of exoplanet imaging are the discovery of objects in the outer part of stellar systems -- constraining models of planet formation --, and its ability to spectrally characterize the planets -- information on their atmosphere. I
In the context of the LAUE project devoted to build a long focal length focusing optics for soft gamma-ray astronomy (70/100 keV to $>$600 keV), we present results of simulation of a Laue lens, based on bent crystals in different assembling configura