ﻻ يوجد ملخص باللغة العربية
Compact binary supersoft X-ray sources (CBSS) are explained as being associated with hydrostatic nuclear burning on the surface of a white dwarf with high accretion rate. This high mass transfer rate has been suggested to be caused by dynamical instability, expected when the donor star is more massive than the accreting object. When the orbital period is smaller than ~6 hours, this mechanism does not work and the CBSS with such periods are believed to be fed by a distinct mechanism: the wind-driven accretion. Such a mechanism has been proposed to explain the properties of objects like SMC 13, T Pyx and V617 Sgr. One observational property that offers a critical test for discriminating between the above two possibilities is the orbital period change. As systems with wind-driven accretion evolve with increasing periods, some of them may reach quite long orbital periods. The above critical test may, therefore, also be applied to orbital periods longer than 6 hours. CAL 87 is an eclipsing system in the LMC with an orbital period of 10.6 hours that could provide the opportunity for testing the hypothesis of the system being powered by wind-driven accretion. We obtained eclipse timings for this system and show that its orbital period increases with a rate of P/Pdot = +7.2(+/-1.3) X 10^{6} years. Contrary to the common belief, we conclude that CAL 87 is the first confirmed case of a wind-driven CBSS with an orbital period longer than 6 hours. The system is probably an evolved object that had an initial secondary mass of M2i=0.63 solar masses but is currently reduced to about M2=0.34 solar masses. We discuss evidence that other CBSS, like CAL 83 and V Sge stars, like WX Cen, are probably also wind-driven systems. This may in fact be the rule, and systems with inverted mass ratio, the exception.
We present and discuss 25 spectra obtained in November 1996, covering all phases of the CAL 87 binary system. These spectra are superior both in signal-to-noise and wavelength coverage to previously published data so that additional spectral features
Cal 87 was observed with XMM-Newton in April of 2003. The source shows a rich emission line spectrum, where lines can be identified if they are red-shifted by 700-1200 km/s. These lines seem to have been emitted in a wind from the system. The eclipse
We report the discovery of an extremely close white dwarf plus F dwarf main-sequence star in a 12 hour binary identified by combining data from the RAdial Velocity Experiment (RAVE) survey and the Galaxy Evolution Explorer (GALEX) survey. A combinati
A new ephemeris has been determined for the supersoft X-ray binary CAL 83 using MACHO photometry. With an improved orbital period of 1.047568 days, it is now possible to phase together photometric and spectroscopic data obtained over the past two dec
We have studied the long-term (~ years) temporal variability of the prototype supersoft X-ray source (SSS) CAL 83 in the LMC, using data from the MACHO and OGLE projects. The CAL 83 light curve exhibits dramatic brightness changes of ~1 mag on timesc