ﻻ يوجد ملخص باللغة العربية
We investigate the J^p=1/2^- baryons in the octets based on flavor SU(3) symmetry. Since baryons with same quantum numbers can mix with each other, we consider the mixing between two octets before their mixing with the singlet. Most predicted decay widths are consistent with the experimental data, and meanwhile we predict two possible $Xi$ mass ranges of the two octets.
We investigate the consequences of $mu-tau$ reflection symmetry in presence of a light sterile neutrino for the $3+1$ neutrino mixing scheme. We discuss the implications of total $mu-tau$ reflection symmetry as well partial $mu-tau$ reflection symmet
We study the left-right asymmetric model based on SU(3)_C otimes SU(2)_L otimes SU(3)_R otimes U(1)_X gauge group, which improves the theoretical and phenomenological aspects of the known left-right symmetric model. This new gauge symmetry yields tha
An extra $SU(2)_D$ gauge factor is added to the well-known left-right extension of the standard model (SM) of quarks and leptons. Under $SU(2)_L times SU(2)_R times SU(2)_D$, two fermion bidoublets $(2,1,2)$ and $(1,2,2)$ are assumed. The resulting m
Flavor mixing is scrutinized at 1-loop in a SU(2)_L gauge theory of massive fermions. The main issue is to cope with kinetic-like, momentum (p^2) dependent effective interactions that arise at this order. They spoil the unitarity of the connection be
Symmetry-protected topological $left(SPTright)$ phases are gapped short-range entangled states with symmetry $G$, which can be systematically described by group cohomology theory. $SU(3)$ and $SU(2)times{U(1)}$ are considered as the basic groups of Q