ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the kinetic power of AGN in the radio mode

64   0   0.0 ( 0 )
 نشر من قبل Andrea Merloni
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrea Merloni




اسأل ChatGPT حول البحث

(Abridged) We have studied the relationship among nuclear radio and X-ray power, Bondi rate and the kinetic luminosity of sub-Eddington active galactic nuclear (AGN) jets. Besides the recently discovered correlation between jet kinetic and Bondi power, we show that a clear correlation exists also between Eddington-scaled kinetic power and bolometric luminosity, given by: Log(L_kin/L_Edd)=0.49*Log(L_bol/L_Edd)-0.78. The measured slope suggests that these objects are in a radiatively inefficient accretion mode, and has been used to put stringent constraints on the properties of the accretion flow. We found no statistically significant correlations between Bondi power and bolometric AGN luminosity, apart from that induced by their common dependence on L_kin. Analyzing the relation between kinetic power and radio core luminosity, we are then able to determine, statistically, both the probability distribution of the mean jets Lorentz factor, peaking at Gamma~7, and the intrinsic relation between kinetic and radio core luminosity, that we estimate as: Log(L_kin)=0.81*Log(L_R)+11.9, in good agreement with theoretical predictions of synchrotron jet models. With the aid of these findings, quantitative assessments of kinetic feedback from supermassive black holes in the radio mode will be possible based on accurate determinations of the central engine properties alone. As an example, Sgr A* may follow the correlations of radio mode AGN, based on its observed radiative output and on estimates of the accretion rate both at the Bondi radius and in the inner flow. If this is the case, the SMBH in the Galactic center is the source of ~ 5 times 10^38 ergs/s of mechanical power, equivalent to about 1.5 supernovae every 10^5 years.

قيم البحث

اقرأ أيضاً

The large-scale structure of the Universe should soon be measured at high redshift during the Epoch of Reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluct uations in the intergalactic medium (IGM) during the EoR. These may be fruitfully combined with separate efforts to measure large-scale emission fluctuations from galactic lines such as [CII], CO, H-$alpha$, and Ly-$alpha$ during the same epoch. The large scale power spectrum of each line encodes important information about reionization, with the 21 cm power spectrum providing a relatively direct tracer of the ionization history. Here we show that the large scale 21 cm power spectrum can be extracted using only cross-power spectra between the 21 cm fluctuations and each of two separate line-intensity mapping data cubes. This technique is more robust to residual foregrounds than the usual 21 cm auto-power spectrum measurements and so can help in verifying auto-spectrum detections. We characterize the accuracy of this method using numerical simulations and find that the large-scale 21 cm power spectrum can be inferred to an accuracy of within 5% for most of the EoR, reaching 0.6% accuracy on a scale of $ksim0.1,text{Mpc}^{-1}$ at $left< x_i right> = 0.36$ ($z = 8.34$ in our model). An extension from two to $N$ additional lines would provide $N(N-1)/2$ cross-checks on the large-scale 21 cm power spectrum. This work strongly motivates redundant line-intensity mapping surveys probing the same cosmological volumes.
112 - K. W. Cavagnolo 2010
Using Chandra X-ray and VLA radio data, we investigate the scaling relationship between jet power, P_jet, and synchrotron luminosity, P_rad. We expand the sample presented in Birzan et al. (2008) to lower radio power by incorporating measurements for 21 gEs to determine if the Birzan et al. (2008) P_jet-P_rad scaling relations are continuous in form and scatter from giant elliptical galaxies (gEs) up to brightest cluster galaxies (BCGs). We find a mean scaling relation of P_jet approximately 5.8x10^43 (P_rad/10^40)^(0.70) erg/s which is continuous over ~6-8 decades in P_jet and P_rad with a scatter of approximately 0.7 dex. Our mean scaling relationship is consistent with the model presented in Willott et al. (1999) if the typical fraction of lobe energy in non-radiating particles to that in relativistic electrons is > 100. We identify several gEs whose radio luminosities are unusually large for their jet powers and have radio sources which extend well beyond the densest parts of their X-ray halos. We suggest that these radio sources are unusually luminous because they were unable to entrain appreciable amounts of gas.
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV) > 3*10^44 erg/s) in which AGN-jetted outflows are creating and sustaining clear Xray cavities. Our sample covers the redshift range 0 < z < 0.6 and reveals strong evolution in the nuclear X-ray luminosities, such that the black holes in these systems have become on average at least 10 times fainter over the last 5 Gyrs. Mindful of potential selection effects, we propose two possible scenarios to explain our results: 1) either that the AGNs in BCGs with X-ray cavities are steadily becoming fainter, or more likely, 2) that the fraction of these BCGs with radiatively efficient nuclei is decreasing with time from roughly 60 per cent at z=0.6 to 30 per cent at z=0.1. Based on this strong evolution, we predict that a significant fraction of BCGs in z=1 clusters may host quasars at their centres, potentially complicating the search for such clusters at high redshift. In analogy with black-hole binaries and based on the observed Eddington ratios of our sources, we further propose that the evolving AGN population in BCGs with X-ray cavities may be transiting from a canonical low/hard state, analogous to that of X-ray binaries, to a quiescent state over the last 5 Gyrs.
We studied the Active Galactic Nuclei (AGN) radio emission from a compilation of hard X-ray selected samples, all observed in the 1.4 GHz band. A total of more than 1600 AGN with 2-10 keV de-absorbed luminosities higher than 10^42 erg/s were used. Fo r a sub-sample of about 50 zlsim 0.1 AGN it was possible to reach a ~80% fraction of radio detections and therefore, for the first time, it was possible to almost completely measure the probability distribution function of the ratio between the radio and the X-ray luminosity Rx=log[L(1.4)/Lx]. The probability distribution function of Rx was functionally fitted as dependent on the X-ray luminosity and redshift, P(Rx|Lx,z). It roughly spans over 6 decades (-7<Rx<-1), and does not show any sign of bi-modality. It resulted that the probability of finding large values of the Rx ratio increases with decreasing X-ray luminosities and (possibly) with increasing redshift. No statistical significant difference was found between the radio properties of the X-ray absorbed and unabsorbed AGN. The measure of the probability distribution function of Rx allowed us to compute the kinetic luminosity function and the kinetic energy density which, at variance with what assumed in many galaxy evolution models, is observed to decrease of about a factor of five at redshift below 0.5. About half of the kinetic energy density results to be produced by the more radio quiet (Rx<-4) AGN. In agreement with previous estimates, the AGN efficiency in converting the accreted mass energy into kinetic power is, on average, ~5x10-3.
We have determined the central velocity dispersion and surface brightness profiles for a sample of powerful radio galaxies in the redshift range 0.06<z<0.31, which were selected on the basis of their young radio source. The optical hosts follow the f undamental plane of elliptical galaxies, showing that young radio sources reside in normal ellipticals, as do other types of radio galaxies. As young radio sources are relatively straightforward to select and the contributions of the AGN light to the optical spectra are minimal, these objects can readily be used to study the evolution of the fundamental plane of elliptical galaxies out to z=1, independently of optical selection effects. The black hole masses of the objects in our sample have been determined using the tight empirical relation of M_bh with central velocity dispersion, and for literature samples of classical radio galaxies and optically selected ellipticals. Only the optically selected in-active galaxies are found to exhibit a correlation between M_bh and radio luminosity. In contrast, the radio powers of the AGN in the samples do not correlate with M_bh at all, with objects at a given black hole mass ranging over 7 orders of magnitude in radio power. We have been able to tie in the population of powerful radio sources with its parent population of in-active elliptical galaxies: the local black hole mass function has been determined, which was combined with the fraction of radio-loud black holes as function of M_bh, as determined from the optically selected galaxy sample, to derive the local volume-density of radio galaxies and the distribution of their black hole masses. These are shown to be consistent with the local radio luminosity function and the distribution of black hole masses in the radio selected samples [ABBREVIATED]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا