ترغب بنشر مسار تعليمي؟ اضغط هنا

On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces

86   0   0.0 ( 0 )
 نشر من قبل Morten S. Risager
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a variant of a problem considered by Dinaburg and Sinai on the statistics of the minimal solution to a linear Diophantine equation. We show that the signed ratio between the Euclidean norms of the minimal solution and the coefficient vector is uniformly distributed modulo one. We reduce the problem to an equidistribution theorem of Anton Good concerning the orbits of a point in the upper half-plane under the action of a Fuchsian group.



قيم البحث

اقرأ أيضاً

In 2012, T. Miyazaki and A. Togb{e} gave all of the solutions of the Diophantine equations $(2am-1)^x+(2m)^y=(2am+1)^z$ and $b^x+2^y=(b+2)^z$ in positive integers $x,y,z,$ $a>1$ and $bge 5$ odd. In this paper, we propose a similar problem (which we c all the shuffle variant of a Diophantine equation of Miyazaki and Togb{e}). Here we first prove that the Diophantine equation $(2am+1)^x+(2m)^y=(2am-1)^z$ has only the solutions $(a, m, x, y, z)=(2, 1, 2, 1, 3)$ and $(2,1,1,2,2)$ in positive integers $a>1,m,x,y,z$. Then using this result, we show that the Diophantine equation $b^x+2^y=(b-2)^z$ has only the solutions $(b,x, y, z)=(5, 2, 1, 3)$ and $(5,1,2,2)$ in positive integers $x,y,z$ and $b$ odd.
Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
50 - Changhao Chen , Xiaohua Wang , 2019
Let $alpha, beta in (0,1)$ such that at least one of them is irrational. We take a random walk on the real line such that the choice of $alpha$ and $beta$ has equal probability $1/2$. We prove that almost surely the $alphabeta$-orbit is uniformly dis tributed module one, and the exponential sums along its orbit has the square root cancellation. We also show that the exceptional set in the probability space, which does not have the property of uniform distribution modulo one, is large in the terms of topology and Hausdorff dimension.
This work determine the entire family of positive integer solutions of the diophantine equation. The solution is described in terms of $frac{(m-1)(m+n-2)}{2} $ or $frac{(m-1)(m+n-1)}{2}$ positive parameters depending on $n$ even or odd. We find the s olution of a diophantine system of equations by using the solution of the diophantine equation. We generalized all the results of the paper [5].
We show that the diophantine equation $n^ell+(n+1)^ell + ...+ (n+k)^ell=(n+k+1)^ell+ ...+ (n+2k)^ell$ has no solutions in positive integers $k,n ge 1$ for all $ell ge 3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا