ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for contact delocalization in atomic scale friction

64   0   0.0 ( 0 )
 نشر من قبل Sergey Krylov
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze an advanced two-spring model with an ultra-low effective tip mass to predict nontrivial and physically rich fine structure in the atomic stick-slip motion in Friction Force Microscopy (FFM) experiments. We demonstrate that this fine structure is present in recent, puzzling experiments. This shows that the tip apex can be completely or partially delocalized, thus shedding new light on what is measured in FFM and, possibly, what can happen with the asperities that establish the contact between macroscopic sliding bodies.

قيم البحث

اقرأ أيضاً

Using cyclic shear to drive a two dimensional granular system, we determine the structural characteristics for different inter-particle friction coefficients. These characteristics are the result of a competition between mechanical stability and entr opy, with the latters effect increasing with friction. We show that a parameter-free maximum-entropy argument alone predicts an exponential cell order distribution, with excellent agreement with the experimental observation. We show that friction only tunes the mean cell order and, consequently, the exponential decay rate and the packing fraction. We further show that cells, which can be very large in such systems, are short-lived, implying that our systems are liquid-like rather than glassy.
169 - O.Benichou 2001
In the present paper we overview our recent results on intrinsic frictional properties of adsorbed monolayers, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. Within the framework of a dynamical master equat ion approach, describing the time evolution of the system, we determine in the most general form the terminal velocity of some biased impure molecule - the tracer particle (TP), constrained to move inside the adsorbed monolayer probing its frictional properties, define the frictional forces as well as the particles density distribution in the monolayer. Results for one-dimensional solid substrates, appropriate to adsorbtion on polymer chains, are compared against the Monte Carlo simulation data, which confirms our analytical predictions.
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat ba th for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
78 - A. Gnoli , A. Petri , F. Dalton 2012
The rectification of unbiased fluctuations, also known as the ratchet effect, is normally obtained under statistical non-equilibrium conditions. Here we propose a new ratchet mechanism where a thermal bath solicits the random rotation of an asymmetri c wheel, which is also subject to Coulomb friction due to solid-on-solid contacts. Numerical simulations and analytical calculations demonstrate a net drift induced by friction. If the thermal bath is replaced by a granular gas, the well known granular ratchet effect also intervenes, becoming dominant at high collision rates. For our chosen wheel shape the granular effect acts in the opposite direction with respect to the friction-induced torque, resulting in the inversion of the ratchet direction as the collision rate increases. We have realized a new granular ratchet experiment where both these ratchet effects are observed, as well as the predicted inversion at their crossover. Our discovery paves the way to the realization of micro and sub-micrometer Brownian motors in an equilibrium fluid, based purely upon nano-friction.
The way granular materials response to an applied shear stress is of the utmost relevance to both human activities and natural environment. One of the their most intriguing and less understood behavior, is the stick-instability, whose most dramatic m anifestation are earthquakes, ultimately governed by the dynamics of rocks and debris jammed within the fault gauge. Many of the features of earthquakes, i.e. intermittency, broad times and energy scale involved, are mimicked by a very simple experimental set-up, where small beads of glass under load are slowly sheared by an elastic medium. Analyzing data from long lasting experiments, we identify a critical dynamical regime, that can be related to known theoretical models used for crackling-noise phenomena. In particular, we focus on the average shape of the slip velocity, observing a breakdown of scaling: while small slips show a self-similar shape, large does not, in a way that suggests the presence of subtle inertial effects within the granular system. In order to characterise the crossover between the two regimes, we investigate the frictional response of the system, which we trat as a stochastic quantity. Computing different averages, we evidence a weakening effect, whose Stribeck threshold velocity can be related to the aforementioned breaking of scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا