ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetric Unparticle Effects on Higgs Boson Mass and Dark Matter

86   0   0.0 ( 0 )
 نشر من قبل Jing Jiang
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a model that introduces a supersymmetric unparticle operator in the minimal supersymmetric Standard Model. We analyze the lowest dimension operator involving an unparticle. This operator behaves as a Standard Model gauge singlet and it introduces a new parameter into the Higgs potential which can provide an alternative way to relax the upper limit on the lightest Higgs boson mass. This operator also introduces several unparticle interactions which can induce a neutral Higgsino to decay into a spinor unparticle. It also induces violation of scale invariance around the electroweak scale. It is necessary for the scale of this violation to be larger than the lightest supersymmetric particle mass to maintain the latter as the usual weakly interacting massive particle dark matter candidate. An alternative is to have unparticle state as dark matter candidate. We also comment on some collider implications.

قيم البحث

اقرأ أيضاً

We study a supersymmetric model in which the Higgs mass, the muon anomalous magnetic moment and the dark matter are simultaneously explained with extra vector-like generation multiplets. For the explanations, non-trivial flavor structures and a singl et field are required. In this paper, we study the flavor texture by using the Froggatt-Nielsen mechanism, and then find realistic flavor structures which reproduce the Cabbibo-Kobayashi-Maskawa matrix and fermion masses at low energy. Furthermore, we find that the fermion component of the singlet field becomes a good candidate of dark matter. In our model, flavor physics and dark matter are explained with moderate size couplings through renormalization group flows, and the presence of dark matter supports the existence of just three generations in low energy scales. We analyze the parameter region where the current thermal relic abundance of dark matter, the Higgs boson mass and the muon $g-2$ can be explained simultaneously.
LHC-7 has narrowed down the mass range of the light Higgs boson. This result is consistent with the supergravity unification framework, and the current Higgs boson mass window implies a rather significant loop correction to the tree value pointing to a relatively heavy scalar sparticle spectrum with universal boundary conditions. It is shown that the largest value of the Higgs boson mass is obtained on the Hyperbolic Branch of radiative breaking. The implications of light Higgs boson in the broader mass range of 115 GeV to 131 GeV and a narrower range of 123 GeV to 127 GeV are explored in the context of the discovery of supersymmetry at LHC-7 and for the observation of dark matter in direct detection experiments.
The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future $e^+e^-$ collider and with dedicated underground dark matter experiments.
Higgs singlet superfields, usually present in extensions of the Minimal Supersymmetric Standard Model (MSSM) which address the $mu$-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmetric S tandard Model (mnSSM), can have significant contributions to $B$-meson flavour-changing neutral current observables for large values of $tanbeta gsim 50$. Illustrative results are presented including effects on the $B_s$ and on the rare decay $B_stomu^+mu^-$. In particular, we find that in the NMSSM, the branching ratio for $B_stomu^+mu^-$ can be enhanced or even suppressed with respect to the Standard Model prediction by more than one order of magnitude.
102 - W. Hollik , T. Plehn , M. Rauch 2008
We compute the complete supersymmetric next-to-leading order corrections to the production of a light Higgs boson in weak boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading order corrections in the Standa rd Model. The supersymmetric QCD corrections turn out to be significantly smaller than their electroweak counterparts. These higher--order corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا