ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Single-Charge Sensing with an rf Quantum Point Contact

124   0   0.0 ( 0 )
 نشر من قبل Charles M. Marcus
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2) with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back-action is rapidly switched.



قيم البحث

اقرأ أيضاً

We report on charge sensing measurements of a GaAs semiconductor quantum dot device using a radio frequency quantum point contact (rf-QPC). The rf-QPC is fully characterized at 4 K and milli-Kelvin temperatures and found to have a bandwidth exceeding 20 MHz. For single-shot charge sensing we achieve a charge sensitivity of 2x10^-4 e/(sqrt)Hz referred to the neighboring dots charge. The rf-QPC compares favorably with rf-SET electrometers and promises to be an extremely useful tool for characterizing and measuring semiconductor quantum systems on fast timescales.
We have operated a quantum point contact (QPC) charge detector in a radio frequency (RF) mode that allows fast charge detection in a bandwidth of tens of megahertz. We find that the charge sensitivity of the RF-QPC is limited not by the noise of a se condary amplifier, but by non-equilibrium noise f the QPC itself. We have performed frequency-resolved measurements of the noise within a 10 MHz bandwidth around our carrier wave. When averaged over our bandwidth, we find that the noise is in good agreement with the theory of photon-assisted shot noise. Our measurements also reveal strong frequency dependence of the noise, asymmetry with respect to the carrier wave, the appearance of sharp local maxima that are correlated with mechanical degrees of freedom in the sample, and noise suppression indicative of many-body physics near the 0.7 structure.
Measuring single-electron charge is one of the most fundamental quantum technologies. Charge sensing, which is an ingredient for the measurement of single spins or single photons, has been already developed for semiconductor gate-defined quantum dots , leading to intensive studies on the physics and the applications of single-electron charge, single-electron spin and photon-electron quantum interface. However, the technology has not yet been realized for self-assembled quantum dots despite their fascinating quantum transport phenomena and outstanding optical functionalities. In this paper, we report charge sensing experiments in self-assembled quantum dots. We choose two adjacent dots, and fabricate source and drain electrodes on each dot, in which either dot works as a charge sensor for the other target dot. The sensor dot current significantly changes when the number of electrons in the target dot changes by one, demonstrating single-electron charge sensing. We have also demonstrated real-time detection of single-electron tunnelling events. This charge sensing technique will be an important step towards combining efficient electrical readout of single-electron with intriguing quantum transport physics or advanced optical and photonic technologies developed for self-assembled quantum dots.
Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device parameters and therefore its performance in terms of measurement bandwidth and sensitivity is an important factor in spin qubit experiments. Here we demonstrate fast and sensitive charge sensing by a radio-frequency reflectometry of an undoped, accumulation-mode Si/SiGe double quantum dot. We show that the large parasitic capacitance in typical accumulation-mode gate geometries impedes reflectometry measurements. We present a gate geometry that significantly reduces the parasitic capacitance and enables fast single-shot readout. The technique allows us to distinguish between the singly- and doubly-occupied two-electron states under the Pauli spin blockade condition in an integration time of 0.8 {mu}s, the shortest value ever reported in silicon, by the signal-to-noise ratio of 6. These results provide a guideline for designing silicon spin qubit devices suitable for the fast and high-fidelity readout.
We use a superconducting microresonator as a cavity to sense absorption of microwaves by a superconducting quantum point contact defined by surface gates over a proximitized two-dimensional electron gas. Renormalization of the cavity frequency with p hase difference across the point contact is consistent with adiabatic coupling to Andreev bound states. Near $pi$ phase difference, we observe random fluctuations in absorption with gate voltage, related to quantum interference-induced modulations in the electron transmission. We identify features consistent with the presence of single Andreev bound states and describe the Andreev-cavity interaction using a dispersive Jaynes-Cummings model. By fitting the weak Andreev-cavity coupling, we extract ~GHz decoherence consistent with charge noise and the transmission dispersion associated with a localized state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا