ﻻ يوجد ملخص باللغة العربية
We report the experimental realization of squeezed quantum states of light, tailored for new applications in quantum communication and metrology. Squeezed states in a broad Fourier frequency band down to 1 Hz has been observed for the first time. Nonclassical properties of light in such a low frequency band is required for high efficiency quantum information storage in electromagnetically induced transparency (EIT) media. The states observed also cover the frequency band of ultra-high precision laser interferometers for gravitational wave detection and can be used to reach the regime of quantum non-demolition interferometry. And furthermore, they cover the frequencies of motions of heavily macroscopic objects and might therefore support the attempts to observe entanglement in our macroscopic world.
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise an
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p
Graph states are a unique resource for quantum information processing, such as measurement-based quantum computation. Here, we theoretically investigate using continuous-variable graph states for single-parameter quantum metrology, including both pha
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this pap
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum i