ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of the Field and Cluster Morphology-Density Relation for Mass-Selected Samples of Galaxies

62   0   0.0 ( 0 )
 نشر من قبل Arjen van der Wel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Sloan Digital Sky Survey (SDSS) and photometric/spectroscopic surveys in the GOODS-South field (the Chandra Deep Field-South, CDFS) are used to construct volume-limited, stellar mass-selected samples of galaxies at redshifts 0<z<1. The CDFS sample at 0.6<z<1.0 contains 207 galaxies complete down to M=4x10^10 Msol (for a ``diet Salpeter IMF), corresponding to a luminosity limit for red galaxies of M_B=-20.1. The SDSS sample at 0.020<z<0.045 contains 2003 galaxies down to the same mass limit, which corresponds to M_B=-19.3 for red galaxies. Morphologies are determined with an automated method, using the Sersic parameter n and a measure of the residual from the model fits, called ``bumpiness, to distinguish different morphologies. These classifications are verified with visual classifications. In agreement with previous studies, 65-70% of the galaxies are located on the red sequence, both at z~0.03 and at z~0.8. Similarly, 65-70% of the galaxies have n>2.5. The fraction of E+S0 galaxies is 43+/-3%$ at z~0.03 and 48+/-7% at z~0.8, i.e., it has not changed significantly since z~0.8. When combined with recent results for cluster galaxies in the same redshift range, we find that the morphology-density relation for galaxies more massive than 0.5M* has remained constant since at least z~0.8. This implies that galaxies evolve in mass, morphology and density such that the morphology-density relation does not change. In particular, the decline of star formation activity and the accompanying increase in the stellar mass density of red galaxies since z~1 must happen without large changes in the early-type galaxy fraction in a given environment.



قيم البحث

اقرأ أيضاً

We examined the morphology-density relations for galaxy samples selected by luminosity and by mass in each of five massive X-ray clusters from z=0.023 to 0.83 for 674 spectroscopically-confirmed members. Rest-frame optical colors and visual morpholog ies were obtained primarily from Hubble Space Telescope images. Morphology-density relations (MDR) are derived in each cluster from a complete, luminosity-selected sample of 452 galaxies with a magnitude limit M_V < M^{*}_{V} + 1. The change in the early-type fraction with redshift matches previous work for massive clusters of galaxies. We performed a similar analysis, deriving MDRs for complete, mass-selected samples of 441 galaxies with a mass-limit of 10^{10.6} M_{sun}. Our mass limit includes faint objects, the equivalent of =~1 mag below L^{*} for the red cluster galaxies, and encompasses =~70% of the stellar mass in cluster galaxies. The MDRs in the mass-selected sample at densities of Sigma > 50 galaxies Mpc^{-2} are similar to those in the luminosity-selected sample but show larger early-type fractions. However, the trend with redshift in the fraction of elliptical and S0 galaxies with masses > 10^{10.6} M_{sun} differs significantly between the mass- and luminosity-selected samples. The clear trend seen in the early-type fraction from z=0 to z=~ 0.8 is not found in mass-selected samples. The early-type galaxy fraction changes much less, and is consistent with being constant at 92% +/- 4% at Sigma> 500 galaxies Mpc^{-2} and 83 +/- 3% at 50 < Sigma < 500 galaxies Mpc^{-2}. This suggests that galaxies of mass lower than > 10^{10.6} M_{sun} play a significant role in the evolution of the early-type fraction in luminosity-selected samples. (Abstract abridged)
We investigate the evolution of mass-selected early-type field galaxies using a sample of 28 gravitational lenses spanning the redshift range 0 < z < 1. Based on the redshift-dependent intercept of the fundamental plane in the rest frame B band, we m easure an evolution rate of d log (M/L)_B / dz = -0.56 +/- 0.04 (all errors are 1 sigma unless noted) if we directly compare to the local intercept measured from the Coma cluster. Re-fitting the local intercept helps minimize potential systematic errors, and yields an evolution rate of d log (M/L)_B / dz = -0.54 +/- 0.09. An evolution analysis of properly-corrected aperture mass-to-light ratios (defined by the lensed image separations) is closely related to the Faber-Jackson relation. In rest frame B band we find an evolution rate of d log (M/L)_B / dz = -0.41 +/- 0.21, a present-day characteristic magnitude of M_{*0} = -19.70 + 5 log h +/- 0.29 (assuming a characteristic velocity dispersion of sigma_{DM*} = 225 km/s), and a Faber-Jackson slope of gamma_{FJ} = 3.29 +/- 0.58. The measured evolution rates favor old stellar populations (mean formation redshift z_f > 1.8 at 2 sigma confidence for a Salpeter initial mass function and a flat Omega_m =0.3 cosmology) among early-type field galaxies, and argue against significant episodes of star formation at z < 1.
74 - N. Gupta , A. Saro , J. J. Mohr 2016
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; $langle z rangle = 0.14$) at South Pole Telescope (SPT) and Sydney University Molonglo Sk y Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg$^2$ SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zeldovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then $1.8pm0.7$ percent of the clusters would be lost from the sample. Allowing for redshift evolution of the form $(1+z)^{2.5}$ increases the incompleteness to $5.6pm1.0$ percent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.
The kinematic morphology-density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses 10 ^12.5 < M_halo < 10^14.5 M_sun/h observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.
We examine the central-galaxy luminosity -- host-halo mass relation for 54 Brightest Group Galaxies (BGGs) and 92 Brightest Cluster Galaxies (BCGs) at z<0.1 and present the first measurement of this relation for a sample of known BCGs at 0.1<z<0.8 (a verage z~0.3). At z<0.1 we find L_K propto M_{200}^{0.24pm0.08} for the BCGs and the early-type BGGs in groups with extended X-ray emission and L_K propto M_{200}^{0.11pm0.10} for the BCGs alone. At 0.1<z<0.8 we find L_K propto M_{200}^{0.28pm0.11}. We conclude that there is no evidence for evolution in this relationship between z<0.1 and z<0.8: BCG growth appears to still be limited by the timescale for dynamical friction at these earlier times, not proceeding according to the predictions of current semi-analytic models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا