ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Transit and Secondary Eclipse Photometry of GJ 436b

331   0   0.0 ( 0 )
 نشر من قبل Drake Deming
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of infrared (8 micron) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ436b using Spitzer. The nearly photon-limited precision of these data allow us to measure an improved radius for the planet, and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/-0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star radius ratio (0.0839 +/-0.0005), independent of the stellar properties. However, we obtain the planetary radius, as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M-dwarfs (M=R). We find Rs=Ms=0.47 +/-0.02 in solar units, and Rp=27,600 +/-1170 km (4.33 +/-0.18 Earth radii). This radius significantly exceeds the radius of a naked ocean planet, and requires a gasesous hydrogen-helium envelope. The secondary eclipse occurs at phase 0.587 +/-0.005, proving a significant orbital eccentricity (e=0.15 +/-0.012). The amplitude of the eclipse (5.7 +/-0.8e-4) indicates a brightness temperature for the planet of T=712 +/-36K. If this is indicative of the planets physical temperature, it suggests the occurrence of tidal heating in the planet. An uncharacterized second planet likely provides ongoing gravitational perturbations, to maintain GJ436bs orbit eccentricity over long time scales.



قيم البحث

اقرأ أيضاً

We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzers extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have
69 - I.A.G. Snellen 2006
We present high precision K-band photometry of the transit and secondary eclipse of extrasolar planet OGLE-TR-113, using the SOFI near-infrared instrument on ESOs NTT. Data were taken in 5 second exposures over two periods of 3-4 hours, using random jitter position offsets. In this way, a relative photometric precision of ~1% per frame was achieved, avoiding systematic effects that seem to become dominant at precisions exceeding this level, and resulting in an overall accuracy of 0.1% per ~10 minutes. The observations of the transit show a flat bottom light-curve indicative of a significantly lower stellar limb-darkening at near-infrared than at optical wavelengths. The observations of the secondary eclipse result in a 3 sigma detection of emission from the exoplanet at 0.17+-0.05%. However, residual systematic errors make this detection rather tentative.
We present photometry of the extrasolar planet WASP-5b in the 3.6 and 4.5 micron bands taken with the Spitzer Space Telescopes Infrared Array Camera as part of the extended warm mission. By examining the depth of the planets secondary eclipse at thes e two wavelengths, we can place joint constraints on the planets atmospheric pressure-temperature profile and chemistry. We measure secondary eclipse depths of 0.197% +/- 0.028% and 0.227% +/- 0.025% in the 3.6 micron and 4.5 micron bands, respectively. Our observations are best matched by models showing a hot dayside and, depending on our choice of model, a weak thermal inversion or no inversion at all. We measure a mean offset from the predicted center of eclipse of 0.078 +/- 0.032 hours, translating to ecos(omega) = 0.0031 +/- 0.0013 and consistent with a circular orbit. We see no evidence for any eclipse timing variations comparable to those reported in a previous transit study.
We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary ecl ipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.
129 - M. Gillon 2007
We present Spitzer Space Telescope infrared photometry of a primary transit of the hot Neptune GJ 436b. The observations were obtained using the 8 microns band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data and the weak li mb-darkening in the 8 microns IRAC band allow us to derive (assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463 +0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet models, an internal structure similar to that of Neptune with a small H/He envelope is necessary to account for the measured radius of GJ 436b.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا