ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanometer-Resolved Collective Micromeniscus Oscillations through Optical Diffraction

39   0   0.0 ( 0 )
 نشر من قبل Helmut Rathgen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of periodic arrays of micrometer-sized liquid-gas menisci formed at superhydrophobic surfaces immersed into water. By measuring the intensity of optical diffraction peaks in real time we are able to resolve nanometer scale oscillations of the menisci with sub-microsecond time resolution. Upon driving the system with an ultrasound field at variable frequency we observe a pronounced resonance at a few hundred kHz, depending on the exact geometry. Modeling the system using the unsteady Stokes equation, we find that this low resonance frequency is caused by a collective mode of the acoustically coupled oscillating menisci.

قيم البحث

اقرأ أيضاً

Singularities in macroscopic systems at discontinuous phase transitions are replaced in finite systems by sharp but continuous changes. Both the energy differences between metastable and stable phases and the energy barriers separating these phases d ecrease with decreasing particle number. Then, for small enough systems, random heterophasic oscillations of the entire system become an observable form of thermal motion. Under certain conditions, these oscillations take the form of oscillatory nucleation. We discuss mechanisms and observation conditions for these random transitions between phases.
The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The totally symmetric subset of these modes includes the transverse shear, common longitudinal, and differential longitudinal modes. We also solve the time-dependent Gross-Pitaevskii (TDGP) equation to simulate the actual JILA experiment, obtaining the Tkachenko mode and identifying a pair of breathing modes. Combining both the BdG and TDGP approaches allows one to unambiguously identify every observed mode.
Self-assembled semiconductor quantum dots show remarkable optical and spin coherence properties, which have lead to a concerted research effort examining their potential as a quantum bit for quantum information science1-6. Here, we present an alterna tive application for such devices, exploiting recent achievements of charge occupation control and the spectral tunability of the optical emission of quantum dots by electric fields7 to demonstrate high-sensitivity electric field measurement. In contrast to existing nanometer-scale electric field sensors, such as single electron transistors8-11 and mechanical resonators12,13, our approach relies on homodyning light resonantly Rayleigh scattered from a quantum dot transition with the excitation laser and phase sensitive lock-in detection. This offers both static and transient field detection ability with high bandwidth operation and near unity quantum efficiency. Our theoretical estimation of the static field sensitivity for typical parameters, 0.5 V/m/ surd Hz, compares favorably to the theoretical limit for single electron transistor-based electrometers. The sensitivity level of 5 V/m/ surd Hz we report in this work, which corresponds to 6.4 * 10-6 e/ surd Hz at a distance of 12 nm, is worse than this theoretical estimate, yet higher than any other result attained at 4.2 K or higher operation temperature.
We show how the switching-on of an electron transport through a system of two parallel quantum dots embedded in a short quantum wire in a photon cavity can trigger coupled Rabi and collective electron-photon oscillations. We select the initial state of the system to be an eigenstate of the closed system containing two Coulomb interacting electrons with possibly few photons of a single cavity mode. The many-level quantum dots are described by a continuous potential. The Coulomb interaction and the para- and dia-magnetic electron-photon interactions are treated by exact diagonalization in a truncated Fock-space. To identify the collective modes the results are compared for an open and a closed system with respect to the coupling to external electron reservoirs, or leads. We demonstrate that the vacuum Rabi oscillations can be seen in transport quantities as the current in and out of the system.
Recent studies have emphasized the importance of impurity scattering for the optical Higgs response of superconductors. In the dirty limit, an additional paramagnetic coupling of light to the superconducting condensate arises which drastically enhanc es excitation. So far, most work concentrated on the periodic driving with light, where the third-harmonic generation response of the Higgs mode was shown to be enhanced. In this work, we additionally calculate the time-resolved optical conductivity of single- and two-band superconductors in a two-pulse quench-probe setup, where we find good agreement with existing experimental results. We use the Mattis-Bardeen approach to incorporate impurity scattering and calculate explicitly the time-evolution of the system. Calculations are performed both in a diagrammatic picture derived from an effective action formalism and within a time-dependent density matrix formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا