ﻻ يوجد ملخص باللغة العربية
We study the dynamics of periodic arrays of micrometer-sized liquid-gas menisci formed at superhydrophobic surfaces immersed into water. By measuring the intensity of optical diffraction peaks in real time we are able to resolve nanometer scale oscillations of the menisci with sub-microsecond time resolution. Upon driving the system with an ultrasound field at variable frequency we observe a pronounced resonance at a few hundred kHz, depending on the exact geometry. Modeling the system using the unsteady Stokes equation, we find that this low resonance frequency is caused by a collective mode of the acoustically coupled oscillating menisci.
Singularities in macroscopic systems at discontinuous phase transitions are replaced in finite systems by sharp but continuous changes. Both the energy differences between metastable and stable phases and the energy barriers separating these phases d
The complete low-energy collective-excitation spectrum of vortex lattices is discussed for rotating Bose-Einstein condensates (BEC) by solving the Bogoliubov-de Gennes (BdG) equation, yielding, e.g., the Tkachenko mode recently observed at JILA. The
Self-assembled semiconductor quantum dots show remarkable optical and spin coherence properties, which have lead to a concerted research effort examining their potential as a quantum bit for quantum information science1-6. Here, we present an alterna
We show how the switching-on of an electron transport through a system of two parallel quantum dots embedded in a short quantum wire in a photon cavity can trigger coupled Rabi and collective electron-photon oscillations. We select the initial state
Recent studies have emphasized the importance of impurity scattering for the optical Higgs response of superconductors. In the dirty limit, an additional paramagnetic coupling of light to the superconducting condensate arises which drastically enhanc