ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition

339   0   0.0 ( 0 )
 نشر من قبل Chee Wei Wong
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and demonstrate the digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities using a self-limiting atomic layer deposition technique. Control of resonances in discrete steps of 122 +/- 18 pm per hafnium oxide atomic layer is achieved through this post-fabrication process, nearly linear over a full 17 nm tuning range. The cavity Q is maintained in this perturbative process, and can reach up to its initial values of 49,000 or more. Our results are highly controllable, applicable to many material systems, and particularly critical to matching resonances and transitions involving mesoscopic optical cavities.


قيم البحث

اقرأ أيضاً

We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 mm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ~ 30 mW laser powers. Over this tuning range, the cavity Q decreases from 3.2times10^5 to 1.2times10^5. Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.
We demonstrate photonic crystal nanobeam cavities that support both TE- and TM-polarized modes, each with a Quality factor greater than one million and a mode volume on the order of the cubic wavelength. We show that these orthogonally polarized mode s have a tunable frequency separation and a high nonlinear spatial overlap. We expect these cavities to have a variety of applications in resonance-enhanced nonlinear optics.
We demonstrate digital tuning of the slow-light regime in silicon photonic-crystal waveguides by performing atomic layer deposition of hafnium oxide. The high group-index regime was deterministically controlled (red-shift of 140 +/- 10 pm per atomic layer) without affecting the group-velocity dispersion and third-order dispersion. Additionally, differential tuning of 110 +/- 30 pm per monolayer of the slow-light TE-like and TM-like modes was observed. This passive post-fabrication process has potential applications including the tuning of chip-scale optical interconnects, as well as Raman and parametric amplification.
Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (alpha-Al2O3) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by c onventional deposition methods. Characterization of electrical and superconducting properties of epitaxial films reveals a reduced room temperature resistivity and increased residual resistance ratio (RRR) for films deposited on sapphire compared to polycrystalline samples deposited concurrently on fused quartz substrates.
Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-unifo rm Mn or Co distribution. Thus, the control of their distribution is crucial for explanation of contradicted magnetic properties of ZnCoO and ZnMnO reported till now. In the present review we discuss advantages of the Atomic Layer Deposition (ALD) growth method, which enables us to control uniformity of ZnMnO and ZnCoO alloys. Properties of ZnO, ZnMnO and ZnCoO films grown by the ALD are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا