ترغب بنشر مسار تعليمي؟ اضغط هنا

I Zw 18 revisited with HST/ACS and Cepheids: New Distance and Age

209   0   0.0 ( 0 )
 نشر من قبل Alessandra Aloisi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Aloisi




اسأل ChatGPT حول البحث

We present new V and I-band HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf (BCD) galaxy in the nearby universe. It has been argued in the past that I Zw 18 is a very young system that started forming stars only < 500 Myr ago, but other work has hinted that older (> 1 Gyr) red giant branch (RGB) stars may also exist. Our new data, once combined with archival HST/ACS data, provide a deep and uncontaminated optical color-magnitude diagram (CMD) that now strongly indicates an RGB. The RGB tip (TRGB) magnitude yields a distance modulus (m-M)_0 = 31.30 +/- 0.17, i.e., D = 18.2 +/- 1.5 Mpc. The time-series nature of our observations allows us to also detect and characterize for the first time three classical Cepheids in I~Zw~18. The time-averaged Cepheid <V> and <I> magnitudes are compared to the VI reddening-free Wesenheit relation predicted from new non-linear pulsation models specifically calculated at the metallicity of I Zw 18. For the one bona-fide classical Cepheid with a period of 8.63 days this implies a distance modulus (m-M)_0 = 31.42 +/- 0.26. The other two Cepheids have unusually long periods (125.0 and 129.8 d) but are consistent with this distance. The coherent picture that emerges is that I Zw 18 is older and farther away than previously believed. This rules out the possibility that I Zw 18 is a truly primordial galaxy formed recently (z < 0.1) in the local universe.



قيم البحث

اقرأ أيضاً

63 - A. Aloisi 2007
We present results from new deep HST/ACS photometry of I Zw 18, the most metal-poor blue compact dwarf galaxy in the nearby universe. It has been previously argued that this is a very young system that started forming stars only < 500 Myr ago, but ot her work has hinted that older (> 1 Gyr) red giant branch (RGB) stars may exist in this galaxy. Our deeper data indeed reveal evidence for an RGB. Underlying old (> 1 Gyr) populations are therefore present in even the most metal-poor systems, implying that star formation started at z > 0.1. The RGB tip (TRGB) magnitude and the properties of Cepheid variables identified from our program indicate that I Zw 18 is farther away (D = 19.0 +/- 1.8 Mpc) than previously believed.
104 - Yuri I. Izotov 1997
We report the discovery of broad Wolf-Rayet emission lines in the Multiple Mirror Telescope (MMT) spectrum of the NW component of I Zw 18, the lowest-metallicity blue compact dwarf (BCD) galaxy known. Two broad Wolf-Rayet (W-R) bumps at the wavelengt hs $lambda$4650 and $lambda$5800 are detected indicating the presence of WN and WC stars. The total numbers of WN and WC stars inferred from the luminosities of the broad He II $lambda$4686 and C IV $lambda$5808 lines are equal to 17(+/-)4 and 5(+/-)2, respectively. The W-R to O stars number ratio is equal to about 0.02, in satisfactory agreement with the value predicted by massive stellar evolution models with enhanced mass loss rates. The WC stars in the northwest component of I Zw 18 can be responsible for the presence of the nebular He II $lambda$4686 emission line, however the observed intensity of this line is several times larger than model predictions, and other sources of ionizing radiation at wavelengths shorter than 228AA are necessary.
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s pectra by Hubble/COS and the Far Ultraviolet Spectroscopic Explorer (FUSE) make this suggestion conclusive by demonstrating that the spectrum of I Zw 18-NW shows no metal lines like O VI 1032, 1038 of comparable ionization as the He II recombination emission.
76 - Y. I. Izotov 1999
Hubble Space Telescope (HST) colour - magnitude diagrams in B, V and R along with long-slit Multiple Mirror Telescope (MMT) spectrophotometric data are used to investigate the evolutionary status of the nearby blue compact dwarf (BCD) galaxy I Zw 18. We find that the distance to I Zw 18 should be as high as 20 Mpc, twice the previously accepted distance, to be consistent with existing observational data on the galaxy: colour-magnitude diagrams, the high ionization state of the gas and presence of WR stars in the main body, and the ionization state of the C component. The spectral energy distribution (SED) of the main body of I Zw 18 is consistent with that of a stellar population with age < 5 Myr. However, the presence of large-scale shells observed around the main body suggests that star formation began ~ 20 Myr at the NW end and propagated in the SE direction. Our analysis of colour-magnitude diagrams and of the spectral energy distribution of the C component implies that star formation in this component started < 100 Myr ago at the NW end, propagated to the SE and stopped ~ 15 Myr ago. Thus, I Zw 18 is likely to be one of the youngest nearby extragalactic objects.
We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W fi lters. Our color magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC419 where the Padova isochrones provided the best fit. The CMD of NGC419 shows several main-sequence turn-offs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC419. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally concentrated blue straggler star candidates in NGC416, while for the other clusters these are not present. Using the red clump magnitudes, we find that the closest cluster, NGC419 (~50kpc), and the farthest cluster, Lindsay 38 (~67kpc), have a relative distance of ~17kpc, which confirms the large depth of the SMC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا