ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleosynthesis in Core-Collapse Supernovae and GRB--Metal-Poor Star Connection

195   0   0.0 ( 0 )
 نشر من قبل Nozomu Tominaga
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the nucleosynthesis yields of core-collapse supernovae (SNe) for various stellar masses, explosion energies, and metallicities. Comparison with the abundance patterns of metal-poor stars provides excellent opportunities to test the explosion models and their nucleosynthesis. We show that the abundance patterns of extremely metal-poor (EMP) stars, e.g., the excess of C, Co, Zn relative to Fe, are in better agreement with the yields of hyper-energetic explosions (Hypernovae, HNe) rather than normal supernovae. We note that the variation of the abundance patterns of EMP stars are related to the diversity of the Supernova-GRB connection. We summarize the diverse properties of (1) GRB-SNe, (2) Non-GRB HNe/SNe, (3) XRF-SN, and (4) Non-SN GRB. In particular, the Non-SN GRBs (dark hypernovae) have been predicted in order to explain the origin of C-rich EMP stars. We show that these variations and the connection can be modeled in a unified manner with the explosions induced by relativistic jets. Finally, we examine whether the most luminous supernova 2006gy can be consistently explained with the pair-instability supernova model.



قيم البحث

اقرأ أيضاً

Motivated by observations of supernova SN 1987A, various authors have simulated Rayleigh-Taylor (RT) instabilities in the envelopes of core collapse supernovae (for a review, see Mueller 1998). The non-radial motion found in these simulations qualita tively agreed with observations in SN 1987A, but failed to explain the extent of mixing of newly synthesized 56Ni quantitatively. Here we present results of a 2D hydrodynamic simulation which re-addresses this failure and covers the entire evolution of the first 5 hours after core bounce.
We review some of the uncertainties in calculating nucleosynthetic yields, focusing on the explosion mechanism. Current yield calculations tend to either use a piston, energy injection, or enhancement of neutrino opacities to drive an explosion. We s how that the energy injection, or more accurately, an entropy injection mechanism is best-suited to mimic our current understanding of the convection-enhanced supernova engine. The enhanced neutrino-opacity technique is in qualitative disagreement with simulations of core-collapse supernovae and will likely produce errors in the yields. But piston-driven explosions are the most discrepant. Piston-driven explosion severely underestimate the amount of fallback, leading to order-of-magnitude errors in the yields of heavy elements. To obtain yields accurate to the factor of a few level, we must use entropy or energy injection and this has become the NuGrid collaboration approach.
We investigate core-collapse supernova (CCSN) nucleosynthesis in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear compositi on in CCSN models to, at best, a 14-species $alpha$-network. Such a simplified network limits the ability to accurately evolve detailed composition, neutronization and the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks in post-processing nucleosynthesis calculations. Limitations such as poor spatial resolution of the tracer particles, estimation of the expansion timescales, and determination of the mass-cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of these uncertainties on post-processing nucleosynthesis calculations and implications for future models.
Core-collapse supernovae (CCSNe) are the extremely energetic deaths of massive stars. They play a vital role in the synthesis and dissemination of many heavy elements in the universe. In the past, CCSN nucleosynthesis calculations have relied on arti ficial explosion methods that do not adequately capture the physics of the innermost layers of the star. The PUSH method, calibrated against SN1987A, utilizes the energy of heavy-flavor neutrinos emitted by the proto-neutron star (PNS) to trigger parametrized explosions. This makes it possible to follow the consistent evolution of the PNS and to ensure a more accurate treatment of the electron fraction of the ejecta. Here, we present the Iron group nucleosynthesis results for core-collapse supernovae, exploded with PUSH, for two different progenitor series. Comparisons of the calculated yields to observational metal-poor star data are also presented. Nucleosynthesis yields will be calculated for all elements and over a wide range of progenitor masses. These yields can be immensely useful for models of galactic chemical evolution.
In a previously presented proof-of-principle study, we established a parametrized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae for a wide range of pre-explosion models. The method is based on the neutrino-driven mechanism and follows collapse, bounce and explosion. There are two crucial aspects of our model for nucleosynthesis predictions. First, the mass cut and explosion energy emerge simultaneously from the simulation (determining, for each stellar model, the amount of Fe-group ejecta). Second, the interactions between neutrinos and matter are included consistently (setting the electron fraction of the innermost ejecta). In the present paper, we use the successful explosion models from Ebinger et al. (2018) which include two sets of pre-explosion models at solar metallicity, with combined masses between 10.8 and 120 M$_{odot}$. We perform systematic nucleosynthesis studies and predict detailed isotopic yields. The resulting $^{56}$Ni ejecta are in overall agreement with observationally derived values from normal core-collapse supernovae. The Fe-group yields are also in agreement with derived abundances for metal-poor star HD84937. We also present a comparison of our results with observational trends in alpha element to iron ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا