ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Electromagnetically Induced Transparency for a Squeezed Vacuum with the Time Domain Method

217   0   0.0 ( 0 )
 نشر من قبل Mikio Kozuma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A probe light in a squeezed vacuum state was injected into cold 87 $Rb atoms with an intense control light in a coherent state. A sub-MHz window was created due to electromagnetically induced transparency, and the incident squeezed vacuum could pass through the cold atoms without optical loss, as was successfully monitored using a time-domain homodyne method.

قيم البحث

اقرأ أيضاً

We experimentally and theoretically analyze the transmission of continuous-wave and pulsed squeezed vacuum through rubidium vapor under the conditions of electromagnetically induced transparency. Frequency- and time-domain homodyne tomography is used to measure the quadrature noise and reconstruct the quantum states of the transmitted light. A simple theoretical model explains the spectrum and degradation of the transmitted squeezing with high precision.
We report the observation of Electromagnetically Induced Transparency (EIT) of a mechanical field, where a superconducting artificial atom is coupled to a 1D-transmission line for surface acoustic waves. An electromagnetic microwave drive is used as the control field, rendering the superconducting transmon qubit transparent to the acoustic probe beam. The strong frequency dependence of the acoustic coupling enables EIT in a ladder configuration due to the suppressed relaxation of the upper level. Our results show that superconducting circuits can be engineered to interact with acoustic fields in parameter regimes not readily accessible to purely electromagnetic systems.
We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon m anifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.
Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission. To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity on the transmon states. From the experimental observations, we clearly identify the EIT and Autler-Townes splitting (ATS) regimes as well as the transition regime in between. Also, the experimental data demonstrate that the threshold $Omega_{rm AIC}$ determined by the Akaike information criterion can describe the EIT-ATS transition better than the threshold $Omega_{rm EIT}$ given by the EIT theory.
We show that an alkali atom with a tripod electronic structure can yield rich electromagnetically induced transparency phenomena even at room temperature. In particular we introduce double-double electromagnetically induced transparency wherein signa l and probe fields each have two transparency windows. Their group velocities can be matched in either the first or second pair of transparency windows. Moreover signal and probe fields can each experience coherent gain in the second transparency windows. We explain using a semi-classical-dressed-picture to connect the tripod electronic structure to a double-Lambda scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا