ترغب بنشر مسار تعليمي؟ اضغط هنا

First Steps in Direct Imaging of Planetary Systems Like our Own: The Science Potential of 2-m Class Optical Space Telescopes

56   0   0.0 ( 0 )
 نشر من قبل Karl Stapelfeldt
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We summarize the scientific potential of high contrast optical space imaging for studies of extrasolar planets, debris disks, and planet formation. The unique scientific capabilities offered by a 2-m class optical telescope, the technical requirements to achieve 10^-9 contrast, and the programmatic means needed to advance such a mission are discussed.


قيم البحث

اقرأ أيضاً

Transmission spectroscopy is an important technique to probe the atmospheres of exoplanets. With the advent of TESS and, in the future, of PLATO, more and more transiting planets around bright stars will be found and the observing time at large teles copes currently used to apply these techniques will not suffice. We demonstrate here that 2-m class telescopes equipped with spectrographs with high resolving power may be used for a certain number of potential targets. We obtained a time series of high-resolution FEROS spectra at the 2.2-m telescope at La Silla of the very hot Jupiter hosting planet WASP-18b and show that our upper limit is consistent with the expectations. This is the first analysis of its kind using 2-m class telescopes, and serves to highlight their potential. In this context, we then proceed to discuss the suitability of this class of telescopes for the upcoming flood of scientifically interesting targets from TESS space mission, and propose a methodology to select the most promising targets. This is of particular significance given that observing time on 2-m class telescopes is more readily available than on large 8-m class facilities.
Earth-Like is an interactive website and twitter bot that allows users to explore changes in the average global surface temperature of an Earth-like planet due to variations in the surface oceans and emerged land coverage, rate of volcanism (degassin g), and the level of the received solar radiation. The temperature is calculated using a simple carbon-silicate cycle model to change the level of $rm CO_2$ in the atmosphere based on the chosen parameters. The model can achieve a temperature range exceeding $-100^circ$C to $100^circ$C by varying all three parameters, including freeze-thaw cycles for a planet with our present-day volcanism rate and emerged land fraction situated at the outer edge of the habitable zone. To increase engagement, the planet is visualised by using a neural network to render an animated globe, based on the calculated average surface temperature and chosen values for land fraction and volcanism. The website and bot can be found at earthlike.world and on twitter as @earthlikeworld. Initial feedback via a user survey suggested that Earth-Like is effective at demonstrating that minor changes in planetary properties can strongly impact the surface environment. The goal of the project is to increase understanding of the challenges we face in finding another habitable planet due to the likely diversity of conditions on rocky worlds within our Galaxy.
The expected yield of potentially Earth-like planets is a useful metric for designing future exoplanet-imaging missions. Recent yield studies of direct-imaging missions have focused primarily on yield methods and trade studies using toy models of mis sions. Here we increase the fidelity of these calculations substantially, adopting more realistic exoplanet demographics as input, an improved target list, and a realistic distribution of exozodi levels. Most importantly, we define standardized inputs for instrument simulations, use these standards to directly compare the performance of realistic instrument designs, include the sensitivity of coronagraph contrast to stellar diameter, and adopt engineering-based throughputs and detector parameters. We apply these new high-fidelity yield models to study several critical design trades: monolithic vs segmented primary mirrors, on-axis vs off-axis secondary mirrors, and coronagraphs vs starshades. We show that as long as the gap size between segments is sufficiently small, there is no difference in yield for coronagraph-based missions with monolithic off-axis telescopes and segmented off-axis telescopes, assuming that the requisite engineering constraints imposed by the coronagraph can be met in both scenarios. We show that there is currently a factor of ~2 yield penalty for coronagraph-based missions with on-axis telescopes compared to off-axis telescopes, and note that there is room for improvement in coronagraph designs for on-axis telescopes. We also reproduce previous results in higher fidelity showing that the yields of coronagraph-based missions continue to increase with aperture size while the yields of starshade-based missions turnover at large apertures if refueling is not possible. Finally, we provide absolute yield numbers with uncertainties that include all major sources of astrophysical noise to guide future mission design.
Optical phase-spaces represent fields of any spatial coherence, and are typically measured through phase-retrieval methods involving a computational inversion, interference, or a resolution-limiting lenslet array. Recently, a weak-values technique de monstrated that a beams Dirac phase-space is proportional to the measurable complex weak-value, regardless of coherence. These direct measurements require scanning through all possible position-polarization couplings, limiting their dimensionality to less than 100,000. We circumvent these limitations using compressive sensing, a numerical protocol that allows us to undersample, yet efficiently measure high-dimensional phase-spaces. We also propose an improved technique that allows us to directly measure phase-spaces with high spatial resolution and scalable frequency resolution. With this method, we are able to easily measure a 1.07-billion-dimensional phase-space. The distributions are numerically propagated to an object placed in the beam path, with excellent agreement. This protocol has broad implications in signal processing and imaging, including recovery of Fourier amplitudes in any dimension with linear algorithmic solutions and ultra-high dimensional phase-space imaging.
171 - J. Anthony Tyson 2010
Over the past decade, sky surveys such as the Sloan Digital Sky Survey have proven the power of large data sets for answering fundamental astrophysical questions. This observational progress, based on a synergy of advances in telescope construction, detectors, and information technology, has had a dramatic impact on nearly all fields of astronomy, and areas of fundamental physics. The next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. The hardware and computational technical challenges and the exciting science opportunities are attracting scientists and engineers from astronomy, optics, low-light-level detectors, high-energy physics, statistics, and computer science. The history of astronomy has taught us repeatedly that there are surprises whenever we view the sky in a new way. This will be particularly true of discoveries emerging from a new generation of sky surveys. Imaging data from large ground-based active optics telescopes with sufficient etendue can address many scientific missions simultaneously. These new investigations will rely on the statistical precision obtainable with billions of objects. For the first time, the full sky will be surveyed deep and fast, opening a new window on a universe of faint moving and distant exploding objects as well as unraveling the mystery of dark energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا