ﻻ يوجد ملخص باللغة العربية
A generalized Fermi-Bose mapping method is used to determine the exact ground states of six models of strongly interacting ultracold gases of two-level atoms in tight waveguides, which are generalizations of the Tonks-Girardeau (TG) gas (1D Bose gas with point hard cores) and fermionic Tonks-Girardeau (FTG) gas (1D spin-aligned Fermi gas with infinitely strong zero-range attractions). Three of these models exhibit a quantum phase transition in the presence of an external magnetic field, associated with a cooperative ground state rearrangement wherein Fermi energy is traded for internal excitation energy. After investigation of these models in the absence of an electromagnetic field, one is generalized to include resonant interactions with a single photon mode, leading to a possible thermal phase transition associated with Dicke superradiance.
The two and three-body correlation functions of the ground state of an optically trapped ultracold spin-1/2 Fermi gas (SFG) in a tight waveguide (1D regime) are calculated in the plane of even and odd-wave coupling constants, assuming a 1D attractive
We consider a mixture of one-dimensional strongly interacting Fermi gases up to six components, subjected to a longitudinal harmonic confinement. In the limit of infinitely strong repulsions we provide an exact solution which generalizes the one for
We prepare and study strongly interacting two-dimensional Bose gases in the superfluid, the classical Berezinskii-Kosterlitz-Thouless (BKT) transition, and the vacuum-to-superfluid quantum critical regimes. A wide range of the two-body interaction st
Using the Theory of Scattering in Restricted Geometries developed by A. Lupu-Sax as a starting point, we present a comprehensive multi-channel theory of atom-atom scattering in tight atom waveguides.
We examine pairing and molecule formation in strongly-interacting Fermi gases, and we discuss how radio-frequency (RF) spectroscopy can reveal these features. For the balanced case, the emergence of stable molecules in the BEC regime results in a t