ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasma Lens for Us Based Super Neutrino Beam at Either FNAL or BNL

38   0   0.0 ( 0 )
 نشر من قبل Juan C. Gallardo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. The current is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. The plasma is immersed in a relatively small solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulations of the not yet fully optimized configuration yielded a 25% higher neutrino flux at a detector situated at 3 km from the target than the horn system for the entire energy spectrum and a factor of 2.5 higher flux for neutrinos with energy larger than 3 GeV. A major advantage of plasma lenses is in background reduction. In antineutrino operation, neutrino background is reduced by a factor of close to 3 for the whole spectrum, and for energy larger than 3 GeV, neutrino background is reduced by a factor of 3.6. Plasma lenses have additional advantages: larger axial currents, high signal purity: minimal neutrino background in antineutrino runs. The lens medium consists of plasma, consequently, particle absorption and scattering is negligible. Withstanding high mechanical and thermal stresses in a plasma is not an issue.

قيم البحث

اقرأ أيضاً

234 - D.Indurthy 2004
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. The beam must be steered with 1 mRad angular accuracy toward the Soudan Underground Laborat ory in northern Minnesota. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and quality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays. We review how the monitors will be used to make beam quality measurements, and as well we review chamber construction details, radiation damage testing, calibration, and test beam results.
The EUROnu Super Beam work package has studied a neutrino beam based on SPL at CERN and aimed at MEMPHYS, a large water Cherenkov detector, proposed for the Laboratoire Souterrain de Modane (Frejus tunnel, France), with a baseline of 130 km. The aim of this proposed experiment is to study the CP violation in the neutrino sector. In the study reported here, we have developed the conceptual design of the neutrino beam, especially the target and the magnetic focusing device. Indeed, this beam present several unprecedented challenges, like the high primary proton beam power (4 MW), the high repetition rate (50 Hz) and the low energy of the protons (4.5 GeV). The design is completed by a study of all the main component of the system, starting from the transport system to guide the beam to the target up to the beam dump.
The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target , and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.
75 - D.Indurthy , S.Kopp , Z.Pavlovich 2004
The Neutrinos at the Main Injector (NuMI) project will extract 120 GeV protons from the FNAL Main Injector in 8.56usec spills of 4E13 protons every 1.9 sec. We have designed secondary emission monitor (SEM) detectors to measure beam profile and halo along the proton beam transport line. The SEM?s are Ti foils 5um in thickness segmented in either 1?mm or 0.5?mm pitch strips, resulting in beam loss ~5E-6. We discuss aspects of the mechanical design, calculations of expected beam heating, and results of a beam test at the 8 GeV transport line to MiniBoone at FNAL.
140 - S.-Y. Kim , K. Moon , M. Chung 2021
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the driving beam and witness electron beam co-propagate through the active plasma lens, interactions between the driving and witness beams and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam in the presence of driving proton bunches. The beam parameters for AWAKE Run 2 are taken as an example for this type of application. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the plasma density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا