ﻻ يوجد ملخص باللغة العربية
Highly ordered periodic arrays of silver nanoparticles have been fabricated which exhibit surface plasmon resonances in the visible spectrum. We demonstrate the ability of these structures to alter the fluorescence properties of vicinal dye molecules by providing an additional radiative decay channel. Using fluorescence lifetime imaging microscopy (FLIM), we have created high resolution spatial maps of the molecular lifetime components; these show an order of magnitude increase in decay rate from a localized volume around the nanoparticles, resulting in a commensurate enhancement in the fluorescence emission intensity.
We have investigated the effects of tuning the localized surface plasmon resonances (LSPRs) of silver nanoparticles on the fluorescence intensity, lifetime, and Raman signal from nearby fluorophores. The presence of a metallic structure can alter the
Highly ordered periodic arrays of silver nanoparticles have been fabricated which exhibit surface plasmon resonances in the visible spectrum. We demonstrate the ability of these structures to alter the fluorescence properties of vicinal dye molecules
We report modifications to the optical properties of fluorophores in the vicinity of noble metal nanotips. The fluorescence from small clusters of quantum dots has been imaged using an apertureless scanning near-field optical microscope. When a sharp
Anisotropic plasmon coupling in closely-spaced chains of Ag nanoparticles was visualized using the electron energy loss spectroscopy in a scanning transmission electron microscope. For dimers as the simplest chain, mapping the plasmon excitations wit
Fluorescence-lifetime imaging microscopy (FLIM) was applied to investigate the donor distribution in SrTiO3 single crystals. On the surfaces of Nb- and La-doped SrTiO3, structures with different fluorescence intensities and lifetimes were found that