ﻻ يوجد ملخص باللغة العربية
We present a first-principles investigation of the phonon-induced electron self-energy in graphene. The energy dependence of the self-energy reflects the peculiar linear bandstructure of graphene and deviates substantially from the usual metallic behavior. The effective band velocity of the Dirac fermions is found to be reduced by 4-8%, depending on doping, by the interaction with lattice vibrations. Our results are consistent with the observed linear dependence of the electronic linewidth on the binding energy in photoemission spectra.
Organic molecular crystals are expected to feature appreciable electron-phonon interactions that influence their electronic properties at zero and finite temperature. In this work, we report first-principles calculations and an analysis of the electr
The Raman peak position and linewidth provide insight into phonon anharmonicity and electron-phonon interactions (EPI) in materials. For monolayer graphene, prior first-principles calculations have yielded decreasing linewidth with increasing tempera
We apply an intense infrared laser pulse in order to perturb the electronic and vibrational states in the three-dimensional charge density wave material 1$T$-VSe$_2$. Ultrafast snapshots of the light-induced hot carrier dynamics and non-equilibrium q
Electron-phonon interaction (EPI) is presumably detrimental for thermoelectric performance in semiconductors because it limits carrier mobility. Here we show that enhanced EPI with strong energy dependence offers an intrinsic pathway to significant i
The Allen-Heine-Cardona theory allows us to calculate phonon-induced electron self-energies from first principles without resorting to the adiabatic approximation. However, this theory has not been able to account for the change of the electron wave