ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical control of spin relaxation in a quantum dot

409   0   0.0 ( 0 )
 نشر من قبل Sami Amasha
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate electrical control of the spin relaxation time T_1 between Zeeman split spin states of a single electron in a lateral quantum dot. We find that relaxation is mediated by the spin-orbit interaction, and by manipulating the orbital states of the dot using gate voltages we vary the relaxation rate W= (T_1)^-1 by over an order of magnitude. The dependence of W on orbital confinement agrees with theoretical predictions and from these data we extract the spin-orbit length. We also measure the dependence of W on magnetic field and demonstrate that spin-orbit mediated coupling to phonons is the dominant relaxation mechanism down to 1T, where T_1 exceeds 1s.



قيم البحث

اقرأ أيضاً

We report electronic control and measurement of an imbalance between spin-up and spin-down electrons in micron-scale open quantum dots. Spin injection and detection was achieved with quantum point contacts tuned to have spin-selective transport, with four contacts per dot for realizing a non-local spin-valve circuit. This provides an interesting system for studies of spintronic effects since the contacts to reservoirs can be controlled and characterized with high accuracy. We show how this can be used to extract in a single measurement the relaxation time for electron spins inside the dot ~ 300 ps and the degree of spin polarization of the contacts P ~ 0.8.
We study spin relaxation in a two-electron quantum dot in the vicinity of the singlet-triplet crossing. The spin relaxation occurs due to a combined effect of the spin-orbit, Zeeman, and electron-phonon interactions. The singlet-triplet relaxation ra tes exhibit strong variations as a function of the singlet-triplet splitting. We show that the Coulomb interaction between the electrons has two competing effects on the singlet-triplet spin relaxation. One effect is to enhance the relative strength of spin-orbit coupling in the quantum dot, resulting in larger spin-orbit splittings and thus in a stronger coupling of spin to charge. The other effect is to make the charge density profiles of the singlet and triplet look similar to each other, thus diminishing the ability of charge environments to discriminate between singlet and triplet states. We thus find essentially different channels of singlet-triplet relaxation for the case of strong and weak Coulomb interaction. Finally, for the linear in momentum Dresselhaus and Rashba spin-orbit interactions, we calculate the singlet-triplet relaxation rates to leading order in the spin-orbit interaction, and find that they are proportional to the second power of the Zeeman energy, in agreement with recent experiments on triplet-to-singlet relaxation in quantum dots.
130 - Zhi-Hai Liu , Rui Li 2018
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are ob tained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
Single holes confined in semiconductor quantum dots are a promising platform for spin qubit technology, due to the electrical tunability of the $g$-factor of holes. However, the underlying mechanisms that enable electric spin control remain unclear d ue to the complexity of hole spin states. Here, we present an experimental and theoretical study of the $g$-factor of a single hole confined in an isotopically enriched silicon planar MOS quantum dot. Electrical characterisation of the 3x3 $g$-tensor shows that local electric fields can tune the g-factor by 500%, and we observe a sweet spot where d$g_{(1overline{1}0)}$/d$V$ = 0, offering a configuration to suppress spin decoherence caused by electrical noise. Numerical simulations show that unintentional electrode-induced strain plays a key role in mediating the coupling of hole spins to electric fields in these spin-qubit devices. These results open a path towards a previously unexplored technology; premeditated strain engineering for hole spin-qubits.
Spin dephasing via the spin-orbit interaction (SOI) is a major mechanism limiting the electron spin lifetime in III-V zincblende quantum wells. The dephasing can be suppressed in GaAs(111) quantum wells by applying an electric field. The suppression has been attributed to the compensation of the intrinsic SOI associated by the bulk inversion asymmetry (BIA) of the GaAs lattice by a structural induced asymmetry (SIA) SOI term induced by an electric field. We provide direct experimental evidence for this mechanism by demonstrating the transition between the BIA-dominated to a SIA-dominated regime via photoluminescence measurements carried out over a wide range of applied fields. Spin lifetimes exceeding 100~ns are obtained near the compensating electric field, thus making GaAs (111) QWs excellent candidates for the electrical storage and manipulation of spins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا