ﻻ يوجد ملخص باللغة العربية
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.
Increased access to mobile devices motivates the need to design communicative visualizations that are responsive to varying screen sizes. However, relatively little design guidance or tooling is currently available to authors. We contribute a detaile
We revisit the longest common extension (LCE) problem, that is, preprocess a string $T$ into a compact data structure that supports fast LCE queries. An LCE query takes a pair $(i,j)$ of indices in $T$ and returns the length of the longest common pre
We present time-space trade-offs for computing the Euclidean minimum spanning tree of a set $S$ of $n$ point-sites in the plane. More precisely, we assume that $S$ resides in a random-access memory that can only be read. The edges of the Euclidean mi
We show that there are CNF formulas which can be refuted in resolution in both small space and small width, but for which any small-width proof must have space exceeding by far the linear worst-case upper bound. This significantly strengthens the spa
Artificial intelligence algorithms have been used to enhance a wide variety of products and services, including assisting human decision making in high-stakes contexts. However, these algorithms are complex and have trade-offs, notably between predic